Yet Another Modular Action Language

Michael Gelfond and Daniela Inclezan
Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA
mgelfond@cs.ttu.edu,daniela.inclezan@ttu.edu

July 7, 2009

Abstract

The paper presents an action language, \mathcal{ALM}, for the representation of knowledge about dynamic systems. It extends action language \mathcal{AL} by allowing definitions of new objects (actions and fluents) in terms of other, previously defined, objects. This, together with the modular structure of the language, leads to more elegant and concise representations and facilitates the creation of libraries of knowledge modules. The methodology of representing knowledge in \mathcal{ALM} is illustrated by a number of examples.

1 Introduction

The paper presents an extension, \mathcal{ALM}, of action language \mathcal{AL} [1], [2] by simple but powerful means for describing modules. \mathcal{AL} is an action language used for the specification of dynamic systems which can be modeled by transition diagrams whose nodes correspond to possible physical states of the domain and whose arcs are labeled by actions. It has a developed theory, methodology of use, and a number of applications [3]. However, it lacks the structure needed for expressing hierarchies of abstractions often necessary for the design of larger knowledge bases and the creation of KR-libraries. The goal of this paper is to remedy this problem. System descriptions of our new language, \mathcal{ALM}, are divided into two parts. The first part contains declarations of sorts, fluents, and actions of the language. Intuitively, it defines an uninterpreted theory of the system description. The second part, called structure, gives an interpretation of this theory by defining particular instances of sorts, fluents, and actions relevant to a given domain. Declarations are divided into modules organized as tree-like hierarchies. This allows for actions and fluents to be defined in terms of other actions and fluents. For instance, action carry (defined in a dictionary as “to move while supporting”) can be declared as a special case of move. There are two other action languages with modular structure. Language MAD [4],[5] is an expansion of action language \mathcal{C} [6]. Even though \mathcal{C} and \mathcal{AL} have a lot in
common, they differ significantly in the underlining assumptions incorporated in their semantics. For example, the semantics of AL incorporates the inertia axiom [7] which says that “Things normally stay the same”. The statement is a typical example of a default, which is to a large degree responsible for the very close and natural connections between AL and ASP [8]. C is based on a different assumption – the so called causality principle – which says that “Everything true in the world must be caused”. Its underlining logical basis is causal logic [9]. There is also a close relationship between ASP and C but, in our judgment, the distance between ASP and ALM is much smaller than that between ASP and C. Another modular language is TAL-C [10], which allows definitions of classes of objects that are somewhat similar to those in ALM. TAL-C however seems to have more ambitious goals: the language is used to describe and reason about various dynamic scenarios, whereas in ALM the description of a scenario and that of reasoning tasks are not viewed as part of the language.

The differences in the underlying languages and in the way structure is incorporated into ALM, MAD and TAL-C lead to very different knowledge representation styles. We believe that this is a good thing. Much more research and experience of use is needed to discover if one of these languages has some advantages over the others, or if different languages simply correspond and enhance different habits of thought.

This paper consists of two parts. First we define the syntax and semantics of an auxiliary extension of AL by so called defined fluents. The resulting language, ALd, will then be expanded to ALM.

2 Expanding AL by Defined Fluents

2.1 Syntax of ALd

A system description of ALd consists of a sorted signature and a collection of axioms. The signature contains the names for primitive sorts, a sorted universe consisting of non-empty sets of object constants assigned to each such name, and names for actions and fluents. The fluents are partitioned into statics, inertial fluents, and defined fluents. The truth values of statics cannot be changed by actions. Inertial fluents can be changed by actions and are subject to the law of inertia. Defined fluents are non-static fluents which are defined in terms of other fluents. They can be changed by actions but only indirectly. An atom is a string of the form p(x) where p is a fluent and x is a tuple of primitive objects. A literal is an atom or its negation. Depending on the type of fluent forming a literal we will use the terms static, inertial, and defined literal. We assume that for every sort s and constant c of this sort the signature contains a static, s(c).

Direct causal effects of actions are described in ALd by dynamic causal laws – statements of the form:

\[a \text{ causes } l \text{ if } p \]

(1)
where \(l \) is an inertial literal and \(p \) is a collection of arbitrary literals. (1) says that if action \(a \) were executed in a state satisfying \(p \) then \(l \) would be true in a state resulting from this execution. Dependencies between fluents are described by state constraints — statements of the form

\[
l \text{ if } p
\]

where \(l \) is a literal and \(p \) is a set of literals. (2) says that every state satisfying \(p \) must satisfy \(l \). Executability conditions of \(\mathcal{AL}_d \) are statements of the form:

\[
\text{impossible } a_1, \ldots, a_k \text{ if } p
\]

The statement says that actions \(a_1, \ldots, a_k \) cannot be executed together in any state which satisfies \(p \). We refer to \(l \) as the head of the corresponding rule and to \(p \) as its body. The collection of state constraints whose head is a defined fluent \(f \) is often referred to as the definition of \(f \). Similarly to logic programming definitions, \(f \) is true in a state \(\sigma \) if the body of at least one of its defining constraints is true in \(\sigma \). Otherwise, \(f \) is false. Finally, an expression of the form

\[
f \equiv g \text{ if } p
\]

where \(f \) and \(g \) are inertial or static fluents and \(p \) is a set of literals, will be understood as a shorthand for four state constraints:

\[
f \text{ if } p, g, \neg f \text{ if } p, \neg g, g \text{ if } p, f, \neg g \text{ if } p, \neg f
\]

An \(\mathcal{AL}_d \) axiom with variables is understood as a shorthand for the set of all its ground instantiations.

2.2 Semantics of \(\mathcal{AL}_d \)

To define the semantics of \(\mathcal{AL}_d \), we define the transition diagram \(T(D) \) for every system description \(D \) of \(\mathcal{AL}_d \). Some preliminary definitions: a set \(\sigma \) of literals is called complete if for any fluent \(f \) either \(f \) or \(\neg f \) is in \(\sigma \); \(\sigma \) is called consistent if there is no \(f \) such that \(f \in \sigma \) and \(\neg f \in \sigma \). Our definition of the transition relation \((\sigma_0, a, \sigma_1) \) of \(T(D) \) will be based on the notion of answer set of a logic program. We will construct a program \(\Pi(D) \) consisting of logic programming encodings of statements from \(D \). The answer sets of the union of \(\Pi(D) \) with the encodings of a state \(\sigma_0 \) and an action \(a \) will determine the states into which the system can move after the execution of \(a \) in \(\sigma_0 \).

The signature of \(\Pi(D) \) will contain: (a) names from the signature of \(D \), (b) two new sorts: \textit{steps} with two constants, 0 and 1, and \textit{fluent_type} with constants \textit{inertial}, \textit{static}, and \textit{defined}, and (c) relations: \textit{holds}(fluent, step) (\textit{holds}(f, i) says that fluent \(f \) is true at step \(i \)), \textit{occurs}(action, step) (\textit{occurs}(a, i) says that action \(a \) occurred at step \(i \)), and \textit{fluent}(fluent_type, fluent) (\textit{fluent}(t, f) says that \(f \) is a fluent of type \(t \)). If \(l \) is a literal formed by a non-static fluent, \(h(l, i) \) will denote \textit{holds}(f, i) if \(l = f \) or \(\neg \textit{holds}(f, i) \) if \(l = \neg f \). Otherwise \(h(l, i) \) is
simply \(l \). If \(p \) is a set of literals \(h(p, i) = \{ h(l, i) : l \in p \} \); if \(e \) is a set of actions,
\(\text{occurs}(e, i) = \{ \text{occurs}(a, i) : a \in e \} \).

Definition of \(\Pi(D) \)

(r1) For every constraint (2) \(\Pi(D) \) contains
\[
h(l, I) \leftarrow h(p, I).
\]

(r2) \(\Pi(D) \) contains the closed world assumption for defined fluents:
\[
\neg \text{holds}(F, I) \leftarrow \text{fluent}(\text{defined}, F),
\text{not } \neg \text{holds}(F, I).
\]

(r3) For every dynamic causal law (1), \(\Pi(D) \) contains
\[
h(l, I + 1) \leftarrow h(p, I),
\text{occurs}(a, I).
\]

(r4) For every executability condition (3) \(\Pi(D) \) contains
\[
\neg \text{occurs}(a_1, I) \lor \ldots \lor \neg \text{occurs}(a_k, I) \leftarrow h(p, I).
\]

(r5) \(\Pi(D) \) contains the Inertia Axiom:
\[
\text{holds}(F, I + 1) \leftarrow \text{fluent}(\text{inertial}, F),
\text{not } \neg \text{holds}(F, I + 1).
\]

(r6) and the following rules:
\[
\text{fluent}(F) \leftarrow \text{fluent}(\text{Type}, F).
\]

(The last two encodings – (11) and (12) – ensure the completeness of states).

This ends the construction of \(\Pi(D) \). Let \(\Pi_c(D) \) be a program constructed by
rules (r1), (r2), and (r6) above. For any set \(\sigma \) of literals, \(\sigma_{nd} \) denotes the
collection of all literals of \(\sigma \) formed by inertial and static fluents. \(\Pi_c(D, \sigma) \) is
gained from \(\Pi_c(D) \cup h(\sigma_{nd}, 0) \) by replacing \(I \) by 0.

Definition 1 (State) A set \(\sigma \) of literals is a *state* of \(T(D) \) if \(\Pi_c(D, \sigma) \) has
answer set \(A \), and \(\sigma = \{ l : h(l, 0) \in A \} \).
Now let σ_0 be a state and e a collection of actions.

$$\Pi(D, \sigma_0, e) =_{def} \Pi(D) \cup h(\sigma_0) \cup \text{occurs}(e, 0)$$

Definition 2 (Transition) A transition $\langle \sigma_0, e, \sigma_1 \rangle$ is in $\mathcal{T}(D)$ iff $\Pi(D, \sigma_0, e)$ has an answer set A such that $\sigma_1 = \{ l : h(l, 1) \in A \}$.

To illustrate the definition we briefly consider

Example 1 (Lin’s Briefcase) ([11])

The system description defining this domain consists of: (a) a signature with sort name latch, sorted universe $\{ l_1, l_2 \}$, action $\text{toggle}(\text{latch})$, inertial fluent $\text{up}(\text{latch})$ and defined fluent open, and (b) axioms:

- $\text{toggle}(L)$ causes $\text{up}(L)$ if $\neg \text{up}(L)$
- $\text{toggle}(L)$ causes $\neg \text{up}(L)$ if $\text{up}(L)$
- open if $\text{up}(l_1), \text{up}(l_2)$.

One can use our definitions to check that the system contains transitions $\langle \{ \neg \text{up}(l_1), \text{up}(l_2), \neg \text{open} \}, \text{toggle}(l_1), \{ \text{up}(l_1), \text{up}(l_2), \text{open} \} \rangle$, $\langle \{ \text{up}(l_1), \text{up}(l_2), \text{open} \}, \text{toggle}(l_1), \{ \neg \text{up}(l_1), \text{up}(l_2), \neg \text{open} \} \rangle$, etc.

Note that a set $\{ \neg \text{up}(l_1), \text{up}(l_2), \text{open} \}$ is not a state of our system.

System descriptions of \mathcal{AL}_d not containing defined fluents are identical to those of \mathcal{AL}. For such descriptions our semantics is equivalent to that of [12], [13]. (To the best of our knowledge, [12] is the first work which uses ASP to describe the semantics of action languages. The definition from [1], [13] is based on rather different ideas.) Note that the semantics of \mathcal{AL}_d is non-monotonic and hence, in principle, the addition of a new definition could substantially change the diagram of \mathcal{D}. The following proposition shows that this is not the case. To make it precise we will need the following definition from [14].

Definition 3 (Residue) Let \mathcal{D} and \mathcal{D}' be system descriptions of \mathcal{AL}_d such that the signature of \mathcal{D} is part of the signature of \mathcal{D}'. \mathcal{D} is a residue of \mathcal{D}' if restricting the states and actions of $\mathcal{T}(\mathcal{D}')$ to the signature of \mathcal{D} establishes an isomorphism between $\mathcal{T}(\mathcal{D})$ and $\mathcal{T}(\mathcal{D}')$.

Proposition 1 Let \mathcal{D} be a system description of \mathcal{AL}_d with signature Σ, $f \notin \Sigma$ be a new symbol for a defined fluent, and \mathcal{D}' be the result of adding to \mathcal{D} the definition of f. Then \mathcal{D} is a residue of \mathcal{D}'.

3 Syntax of \mathcal{ALM}

A system description, \mathcal{D}, of \mathcal{ALM} consists of the system’s declarations (a non-empty set of modules) followed by the system’s structure.

- **system description name**
- **declarations of name**
 - [module]^{+}
- **structure of name**
A module can be viewed as a collection of declarations of sort, fluent and action classes of the system, i.e.

\[
\text{module name}
\quad \text{sort declarations}
\quad \text{fluent declarations}
\quad \text{action declarations}
\]

If the declaration contains only one module then the first line above can be omitted. In the next two sections we will define the declarations and the structure of a system description D.

3.1 Declarations of D

(1) A sort declaration of \mathcal{ALM} is of the form

\[s_1 : s_2 \]

where s_1 is a sort name and s_2 is either a sort name or the keyword sort\(^1\). In the latter case the statement simply declares a new sort s_1. In the former, s_1 is declared as a subsort of sort s_2.

The sort declaration section of a module is of the form

\[
\text{sort declarations}
\quad [\text{sort declaration}]^+\]

(2) A fluent declaration of \mathcal{ALM} is of the form

\[f(s_1, \ldots, s_k) : \text{type fluent axioms} \quad \text{[state_constraint.]} + \]

\[\text{end of } f \]

where f is a fluent name, s_1, \ldots, s_k is a list of sort names, and type is one of the following keywords: static, inertial, defined. If the list of sort names is empty we omit parenthesis and simply write f. The remaining part – consisting of the keyword axioms followed by a non-empty list of state constraints of \mathcal{AL}_d and the line starting with the keywords end of – is optional and can be omitted. The statement declares fluent f with parameters from s_1, \ldots, s_k respectively as static, inertial, or defined.

The fluent declaration section of a module is of the form

\[
\text{fluent declarations}
\quad [\text{fluent declaration}]^+\]

\(^1\)Syntactically, names are defined as identifiers starting with a lower case letter.
(3) An action declaration of ALM is of the form

\[
\begin{align*}
 a_1 : a_2 \\
 \text{attributes} \\
 \quad [\text{attr} : \text{sort}]^+ \\
 \text{axioms} \\
 \quad [\text{law}].^+ \\
 \text{end of } a_1
\end{align*}
\]

where a_1 is an action name, a_2 is an action name or the keyword action, attr is an identifier used to name an attribute of the action, and law is a dynamic causal law or an executability condition similar to the ones of ALd. If $a_2 = \text{action}$ the statement declares a_1 to be a new action class. If a_2 is an action name then the statement declares a_1 as a special case of action class a_2. The two remaining sections of the declaration contain the names of attributes, and causal laws and executability conditions for actions from this class. Both the attribute and the axiom part of the declaration are optional and can be omitted. With respect to axioms, the difference between ALM and ALd is that actions in ALd are understood as action instances while here they are viewed as action classes. Also, in ALM in addition to literals, the bodies of these laws can contain attribute atoms: expressions of the form attr = c, where attr is the name of an attribute of the action and c is an element of the corresponding sort. The action declaration section of a module is of the form

\[
\text{action declarations} \\
\quad [\text{action declaration}]^+
\]

The set of sort, fluent and action declarations from the modules of system description D will be called the declaration of D and denoted by $\text{decl}(D)$. In order to be “well-defined” the declaration of a system description D should satisfy certain natural conditions designed to avoid circular declarations and other unintuitive constructs. To define these conditions we need the following notation and terminology: Sort declarations of $\text{decl}(D)$ define a directed graph $S(D)$ such that $(\text{sort}_2, \text{sort}_1) \in S(D)$ iff $\text{sort}_1 : \text{sort}_2 \in D$. Similarly, the graph $A(D)$ is defined by action declarations from $\text{decl}(D)$. We refer to them as sort and action hierarchies of D.

Definition 4 The declaration, $\text{decl}(D)$, of system description D is called well-formed if

1. Sort and action hierarchies of D are trees with roots sort and action respectively.

2. If $\text{decl}(D)$ contains declarations of $f(s_1, \ldots, s_k)$ and $f(s'_1, \ldots, s'_k)$ then $s_i = s'_i$ for every $1 \leq i \leq k$.

\[^2\text{Due to space limitations, we restrict executability conditions of } \text{ALM} \text{ to statements that involve only one action, not multiple actions: impossible } a_1 \text{ if } p.\]
3. If decl(D) contains declarations of action a with attributes \(attr_1 : s_1, \ldots, attr_k : s_k\) and of action \(a\) with attributes \(attr'_1 : s'_1, \ldots, attr'_m : s'_m\) then \(k = m\), and \(attr_i = attr'_i\) and \(s_i = s'_i\) for every \(1 \leq i \leq k\).

From now on we only consider system descriptions with well-formed declarations.

3.2 Structure of \(D\)

The structure of a system description \(D\) defines an interpretation of sorts, fluents, and actions declared in the system’s declaration. It consists of the definitions of sorts and actions, as well as truth assignments for statics of \(D\). Sorts are defined as follows:

\[
\text{sorts} \\
[\text{constants} \in s]^+ \\
\]

where \(\text{constants}\) is a non-empty list of identifiers not occurring in the declarations of \(D\). We will refer to them as objects of \(D\). The definition of sorts is followed by the definition of actions:

\[
\text{actions} \\
[\text{instance description}]^+ \\
\]

where \(\text{instance description}\) is defined as follows:

\[
\text{instance } a_1(t_1, \ldots, t_k) \text{ where } \text{cond} : a_2 \\
\text{attr}_1 := t_1 \\
\ldots \\
\text{attr}_k := t_k \\
\]

where \(\text{attr}_1, \ldots, \text{attr}_k\) are attributes of an action class \(a_2\) or of an ancestor of \(a_2\) in \(A(D)\), \(t's\) are objects of \(D\) or variables – identifiers starting with a capital letter –, and \(\text{cond}\) is a set of static literals. An instance description without variables will be called an action instance. An instance description containing variables will be referred to as action schema, and viewed as a shorthand for a set of action instances, \(a_1(c_1, \ldots, c_k)\), obtained from the schema by replacing variables \(V_1, \ldots, V_k\) by their possible values \(c_1, \ldots, c_k\). We say that an action instance \(a_1(c_1, \ldots, c_k)\) belongs to action class \(a_2\) and to any action class which is an ancestor of \(a_2\) in \(A(D)\). Finally, we define statics as:

\[
\text{statics} \\
[\text{state_constraint}]^+ \\
\]

where the head of the state constraint is an expression of the form \(f(c_1, \ldots, c_k)\) with \(f\) being a static fluent and \(c_1, \ldots, c_k\) being properly sorted elements of the universe of \(D\), and the body of the state constraint is a collection of similar expressions. As usual, if the list is empty the keyword statics should be omitted.
Example 2 [Basic Travel]
Let us now consider an example of a system description of \mathcal{ALM}.

We consider a domain with three sorts of simple entities: (i) separate and self-contained entities referred to as \textit{things}, (ii) \textit{things} that can move on their own referred to as \textit{movers}, and (iii) roughly bounded parts of space or surface having some specific characteristic or function referred to as \textit{areas}. The \textit{movers} of this domain will be moving between areas of the domain. The geometry will be described by two primitive static relations between two areas: \textit{within} and \textit{disjoint} (an area A_1 can be located within an area A_2; two areas, A_1 and A_2, can be disjoint from each other). We will also have an inertial fluent, $\text{loc_in}(\text{things}, \text{areas})$, which holds if a thing is located within an area.

\textbf{system description basic_travel}

\textbf{declarations of basic_travel}

\textbf{module basic_geometry}

\textbf{sort declarations}

\textit{areas} : sort \\
\% roughly bounded parts of space or surface \\
\% having some specific characteristic or function

\textbf{fluent declarations}

\textit{within}(\textit{areas}, \textit{areas}) : static fluent \\
\% one area is located within another area

\textbf{axioms}

\begin{align*}
\text{within}(A_1, A_2) & \quad \text{if} \quad \text{within}(A_1, A), \\
\text{within}(A_1, A_2) & \quad \text{if} \quad \text{within}(A, A_2).
\end{align*}

\begin{align*}
\neg \text{within}(A_2, A_1) & \quad \text{if} \quad \text{within}(A_1, A_2). \\
\neg \text{within}(A_1, A_2) & \quad \text{if} \quad \text{disjoint}(A_1, A_2).
\end{align*}

\textbf{end of within}

\textit{disjoint}(\textit{areas}, \textit{areas}) : static fluent \\
\% one area is disjoint from another area

\textbf{axioms}

\begin{align*}
\text{disjoint}(A_2, A_1) & \quad \text{if} \quad \text{disjoint}(A_1, A_2). \\
\text{disjoint}(A_1, A_2) & \quad \text{if} \quad \text{within}(A_1, A_3), \\
\text{disjoint}(A_2, A_3). \quad \text{if} \quad \text{disjoint}(A_2, A_3).
\end{align*}

\textbf{end of disjoint}

\textbf{module move_between_areas}

\textbf{sort declarations}

\textit{things} : sort \\
\% separate and self-contained entities
movers : things
% things that can move on their own

areas : sort

fluent declarations
loc_in(things, areas) : inertial fluent
% one thing is located in an area

axioms
loc_in(T, A_2) if within(A_1, A_2),
loc_in(T, A_1).
¬loc_in(T, A_2) if disjoint(A_1, A_2),
loc_in(T, A_1).

end of loc_in

action declarations
move : action

attributes
actor : movers
origin, dest : areas

axioms
move causes loc_in(O, A) if actor = O,
dest = A.

impossible move if actor = O,
origin = A,
¬loc_in(O, A).

impossible move if origin = A_1,
dest = A_2,
¬disjoint(A_1, A_2).

end of move

structure of basic_travel

sorts
michael, john ∈ movers
london, paris, rome ∈ areas

actions
instance move(O, A_1, A_2) where A_1 ≠ A_2 : move
actor := O
origin := A_1
dest := A_2

statics
disjoint(london, paris).
disjoint(paris, rome).
disjoint(rome, london).
The first axiom in the declaration of action class *move* is to be read as: For every instance *m* of action class *move*, if *O* is the actor of *m* and *A* is the destination of *m*, then the occurrence of *m* causes *O* to be located in *A*.

4 Semantics of \(\mathcal{ALM} \)

The semantics of a system description \(\mathcal{D} \) of \(\mathcal{ALM} \) is defined by mapping \(\mathcal{D} \) into the system description \(\tau(\mathcal{D}) \) of \(\mathcal{ALD} \).

1. **The signature, \(\Sigma \), of \(\tau(\mathcal{D}) \):**
 Sort names of \(\Sigma \) are those declared in \(\text{decl}(\mathcal{D}) \). The sorted universe of \(\Sigma \) is given by the sort definitions from \(\mathcal{D} \)'s structure. We assume the domain closure assumption [15], i.e. sorts of \(\Sigma \) will have no other elements except those specified in their definitions. An expression \(f(c_1, \ldots, c_k) \) is a fluent name of \(\Sigma \) if \(s_1, \ldots, s_k \) are the sorts of the parameters of \(f \) in the declaration of \(f \) from \(\text{decl}(\mathcal{D}) \), and for every \(i, c_i \in s_i \). The set of action names of \(\Sigma \) is the set of all action instances defined by the structure of \(\mathcal{D} \).

2. **Axioms of \(\tau(\mathcal{D}) \):**
 (i) State constraints of \(\tau(\mathcal{D}) \) are the result of grounding the variables of state constraints from \(\text{decl}(\mathcal{D}) \) and of static definitions in the structure of \(\mathcal{D} \) by their possible values from the sorted universe of \(\Sigma \). Already grounded static definitions from the structure of \(\mathcal{D} \) are also state constraints of \(\tau(\mathcal{D}) \).

 (ii) To define dynamic causal laws and executability conditions of \(\tau(\mathcal{D}) \) we do the following: For every action instance \(a_i \) of \(\Sigma \) and every action class \(a \) such that \(a_i \) belongs to \(a \):

 For every causal law and executability condition \(L \) of \(a \):

 (a) Construct the expression obtained by replacing occurrences of \(a \) in \(L \) by \(a_i \). For instance, the result of replacing \(\text{move} \) by \(\text{move}(\text{john}, \text{london}, \text{paris}) \) in the dynamic causal law for action class \(\text{move} \) will be:

 \[\text{move}(\text{john}, \text{london}, \text{paris}) \text{ causes } \text{loc}_\text{in}(O, A) \text{ if } \begin{align*} &\text{actor } = O, \\
&\text{dest } = A. \end{align*} \]

 (b) Ground all the remaining variables in the resulting expressions by properly sorted constants of the universe of \(\mathcal{D} \).

 (c) Remove the axioms containing atoms of the form \(\text{attr} = y \) where \(y \) is not the value assigned to \(\text{attr} \) in the definition of instance \(a_i \). Remove atoms of the form \(\text{attr} = y \) from the remaining axioms.
move(john,london,paris) causes loc_in(john,paris)
and eliminates the second axiom.

It is not difficult to check that the resulting expressions are causal laws and
executability conditions of \mathcal{AL}_d and hence $\tau(D)$ is a system description of \mathcal{AL}_d.

5 Representing Knowledge in \mathcal{ALM}

In this section we illustrate the methodology of representing knowledge in \mathcal{ALM}
by way of several examples.

5.1 Actions as Special Cases

In the introduction we mentioned action carry defined as “move while support-
ing”. Let us now declare a new module containing such an action. The example
will illustrate the use of modules for the elaboration of an agent’s knowledge,
and the declaration of an action as a special case of other action.

Example 3 [Carry]
We expand the system description basic_travel by a new module, carrying_things.

module carrying_things

sort declarations
 areas : sort
 things : sort
 movers : things
 carriables : things
% things which can be carried by movers

fluent declarations
 holding(things,things) : inertial fluent
% holding(X,Y) if X holds Y in position so as to keep it from falling
 is_held(things) : defined fluent
% a thing is held in position
 axioms
 is_held(O) if holding(O,O).
end of is_held

loc_in(things,areas) : inertial fluent
 axioms
 loc_in(T,A) ≡ loc_in(O,A) if holding(O,T).
end of loc_in
action declarations

move : action
attributes
 actor : movers
 origin, dest : areas
axioms
 impossible move if actor = O, is_held(O).
end of move

carry : move
attributes
carried_thing : carriables
axioms
 impossible carry if actor = O,
 carried_thing = T,
 ¬holding(O,T).
end of carry

grip : action
attributes
 actor : movers
 patient : things
axioms
 grip causes holding(C,T) if actor = C, patient = T.
 impossible grip if actor = C,
 patient = T,
 holding(C,T).
end of grip

release : action
attributes
 actor : movers
 patient : things
axioms
 release causes ¬holding(C,T) if actor = C, patient = T.
 impossible release if actor = C,
 patient = T,
 ¬holding(C,T).
end of release

Let us add this module to the declarations of basic_travel and update the structure of basic_travel by the definition of sort carriables:
suitcase ∈ carriables

and a new action

instance carry(O, T, A) : carry
actor := O
carried_thing := T
dest := A

It is not difficult to check that, according to our semantics, the signature of \(\tau(\text{travel}) \) of the new system description \(\text{travel} \) will be obtained from the signature of \(\tau(\text{basic_travel}) \) by adding the new sort, \(\text{carriables} = \{\text{suitcase}\} \), new fluents like \(\text{holding}(\text{john}, \text{suitcase}) \), \(\text{is_held}(\text{suitcase}) \) etc., and new actions like \(\text{carry}(\text{john}, \text{suitcase}, \text{london}) \), \(\text{carry}(\text{john}, \text{suitcase}, \text{paris}) \), etc.

In addition, the old system description will be expanded by axioms:

\[\text{carry}(\text{john}, \text{suitcase}, \text{london}) \text{ causes } \text{loc_in}(\text{john}, \text{london}) \]
\[\text{loc_in}(\text{suitcase}, \text{london}) \equiv \text{loc_in}(\text{john}, \text{london}) \text{ if } \text{holding}(\text{john}, \text{suitcase}) \]

Using Proposition 1 it is not difficult to show that the diagram of \(\text{travel} \) is a conservative extension of that for \(\text{basic_travel} \).

5.2 Library Modules

The modules from the declaration part of \(\text{travel} \) are rather general and can be viewed as axioms describing our commonsense knowledge about motion. Obviously, such axioms can be used for problem solving in many different domains. It is therefore reasonable to put them in a library of commonsense knowledge. A library module can be defined simply as a collection of modules available for public use. Such modules can be imported from the library and inserted in the declaration part of a system description that a programmer is trying to build.

To illustrate the use of this library let us assume that all the declarations from \(\text{travel} \) are stored in a library module \(\text{motion} \), and show how this module can be used to solve the following classical KR problem.

Example 4 [Monkey and Banana]

A monkey is in a room. Suspended from the ceiling is a bunch of bananas, beyond the monkey’s reach. On the floor of the room stands a box. How can the monkey get the bananas? The monkey is expected to get hold of the box, push it under the banana, climb on the box’s top, and grasp the banana.

We are interested in finding a reasonably general and elaboration tolerant declarative solution to this problem. The first step will be identifying sorts of objects relevant to the domain. Clearly the domain contains things and areas. The things move or are carried from one place to another, climbed on, or grasped. This suggests the use of the library module \(\text{motion} \) containing commonsense axiomatization of such actions. We start with the following:

system description \(\text{monkey_and_banana} \)
declarations of \textit{monkey_and_banana} \\
\textbf{import} \textit{motion from commonsense_library} \\
An \textit{ALCM} compiler will simply copy all the declarations from library module \textit{motion} into our system description. Next we will have: \\
\textbf{module main} \\
\% The module will contain specific information about the problem domain. \\
\textbf{sort declarations} \\
\% The module will contain specific information about the problem domain. \\
\textbf{thing} : \textbf{sort} \\
\textbf{movers} : \textbf{thing} \\
\textbf{monkeys} : \textbf{movers} \\
\textbf{carries} : \textbf{things} \\
\textbf{boxes} : \textbf{carries} \\
\textbf{bananas} : \textbf{things} \\
\textbf{areas} : \textbf{sort} \\
\textbf{places} : \textbf{areas} \\
\textbf{fluent declarations} \\
\% The module will contain specific information about the problem domain. \\
\textbf{under(places,things)} : \textbf{static fluent} \\
\textbf{is_top(areas,things)} : \textbf{static fluent} \\
\textbf{can_reach(movers,things)} : \textbf{defined fluent} \\
\textbf{axioms} \\
\% The module will contain specific information about the problem domain. \\
\textbf{can_reach(M,Box)} if \textbf{monkeys(M)}, \\
\textbf{boxes(Box)}, \\
\textbf{loc_in(M,L)}, \\
\textbf{loc_in(Box,L)}. \\
\textbf{can_reach(M,Banana)} if \textbf{monkeys(M)}, \\
\textbf{bananas(Banana)}, \\
\textbf{boxes(Box)}, \\
\textbf{loc_in(M,L1)}, \\
\textbf{is_top(L1,Box)}, \\
\textbf{loc_in(Box,L)}, \\
\textbf{under(L,Banana)}. \\
\textbf{end of can_reach} \\
\textbf{action declarations} \\
\textbf{grip} : \textbf{action} \\
\textbf{attributes} \\
\textbf{actor} : \textbf{movers} \\
\textbf{patient} : \textbf{things} \\
\textbf{axioms}
impossible grip if
actor = C,
patient = T,
¬can_reach(C, T).

end of grip

structure of monkey_and_banana

sorts

m ∈ monkeys
b ∈ bananas
box ∈ boxes
floor, ceiling ∈ areas
l_1, l_2, l_3, l_4 ∈ places

actions

instance move(m, L) where places(L) : move
 actor := m
 dest := L

instance carry(m, box, L) where places(L) : move
 actor := m
 carried_thing := box
 dest := L

instance grip(m, O) where O ≠ m : move
 actor := m
 patient := O

statics

disjoint(L_1, L_2) if places(L_1), places(L_2), L_1 ≠ L_2.
disjoint(floor, ceiling).
within(L, floor) if places(L), ¬is_top(L, box).
under(l_1, l_4),
is_top(l_4, box).

One can check that the system description defines a correct transition diagram of the problem. Standard ASP planning techniques can be used together with the ASP translation of the description to solve the problem.

6 Conclusions

In this paper we introduced a modular extension, \(\mathcal{ALM}\), of action language \(\mathcal{AL}\). \(\mathcal{ALM}\) allows definitions of fluents and actions in terms of already defined ones. System descriptions of the language are divided into a general uninterpreted theory and its domain dependent interpretation. We believe that this facilitates the reuse of knowledge and the organization of libraries. We are currently working on proving some mathematical properties of \(\mathcal{ALM}\) and implementing the translation of its theories into logic programs.
References

