New Definition of Epistemic Specifications

Michael Gelfond
Texas Tech University
April 28, 2011
Twenty years ago in a long technical report I expanded the language of ASP by modal operators:

\[Kp \] — \(p \) is known to be true

\[Mp \] — \(p \) may be believed to be true.

Theories in the new language were called *epistemic specifications*.

A typical epistemic specification, e.g.

\[q(X) \leftarrow Kp(X) \]

\[p(a) \]

\[p(b) \text{ or } p(c) \]

defined a collection of *belief sets*:

\[W = \{\{p(a), p(b), q(a)\}, \{p(a), p(c), q(a)\}\} \]
I illustrated the need for a new language by a simple example: Scholarship Eligibility is expressed by rules:

1. \(\text{eligible}(X) \leftarrow \text{highGPA}(X) \)
2. \(\text{eligible}(X) \leftarrow \text{minority}(X), \text{fairGPA}(X) \)
3. \(\neg \text{eligible}(X) \leftarrow \neg \text{fairGPA}(X), \neg \text{highGPA}(X) \)

and the statement: *The students whose eligibility is not determined by the college rules should be interviewed by the scholarship committee.*

Problem: how to represent this rule?
First (Unsuccessful) Attempt

1. $\text{eligible}(X) \leftarrow \text{highGPA}(X)$.
2. $\text{eligible}(X) \leftarrow \text{minority}(X), \text{fairGPA}(X)$.
3. $\neg\text{eligible}(X) \leftarrow \neg\text{fairGPA}(X), \neg\text{highGPA}(X)$.
4. $\text{interview}(X) \leftarrow \neg\text{eligible}(X), \neg\neg\text{eligible}(X)$.

$\text{fairGPA}(\text{ann})$.
$\neg\text{highGPA}(\text{ann})$.
$\text{fairGPA}(\text{mike})$ or $\text{highGPA}(\text{mike})$.

The program answers yes to
$\text{interview}(\text{ann})$
but unknown to
$\text{interview}(\text{mike})$.
Eligibility Rules in the New Language

1. \text{eligible}(X) \leftarrow \text{highGPA}(X).

2. \text{eligible}(X) \leftarrow \text{minority}(X), \text{fairGPA}(X).

3. \neg \text{eligible}(X) \leftarrow \neg \text{fairGPA}(X), \neg \text{highGPA}(X).

4. \text{interview}(X) \leftarrow \neg K \text{ eligible}(X),
 \neg K \neg \text{ eligible}(X)

used together with

\text{fairGPA}(ann).

\neg \text{highGPA}(ann).

\text{fairGPA}(mike) \text{ or } \text{highGPA}(mike).

entails that both, Mike and Ann, should be interviewed.
A collection S of sets of ground literals entails Kp if p belongs to every set from S.

Definition

Let T be an epistemic specification and S be a collection of sets of ground literals in the language of T. By T^S we will denote the disjunctive logic program obtained from T by:

1. removing all rules containing subjective literals not entailed by S.
2. removing all other occurrences of subjective literals.

A set S is called a *world view* of T if S is the collection of all answer sets of T^S.
Example

A specification:

\[p(X) \leftarrow K \ q(X). \]
\[q(a) \text{ or } q(b). \]
\[q(c). \]

has the worldview

\[W = \{\{q(c), q(a), p(c)\}, \{q(c), q(b), p(c)\}\} \]

The reduct is:

\[p(c). \]
\[q(a) \text{ or } q(b). \]
\[q(c). \]
Unfortunately recursion through operator K leads to unintended world views. Consider a specification Π

$$p \leftarrow K \ p$$

and two sets:

$$W_1 = \{\{} \}$$
$$W_2 = \{\{p\}\}.$$

The reducts are

$$\Pi^{W_1} = \emptyset$$
$$\Pi^{W_2} = \{p.\}$$

Both, W_1 and W_2 are world views of Π. But belief in p in W_2 is not supported — W_2 is unintended world view!
The New Definition: Syntax

Notation:

- $p, \neg p$ — objective literals.
- $K l, M l, \neg K l, \neg M l$ where l is an objective literal possibly preceded by default negation not — subjective literals.
- $M l =_{\text{def}} \neg K \ not \ l$

Definition

Epistemic specification is a collection of rules of the form:

$$l_1 \ or \ ... \ or \ l_k \leftarrow g_{k+1}, ..., g_m, \ not \ l_{m+1}, ..., \ not \ l_n \quad (1)$$

where the l’s are objective literals and the g’s are subjective or objective literals.

Programs with variables are shorthands for their ground instantiations.
Definition

Let T be an epistemic specification and S be a collection of sets of ground literals in the language of T. By T^S we will denote the disjunctive logic program obtained from T by:

1. removing all rules containing subjective literals not entailed by S.
2. removing all other occurrences of subjective literals of the form $\neg K \bot$,
3. replacing remaining occurrences of literals of the form $K \bot$ by \bot.

A set S is called a world view of T if S is the collection of all answer sets of T^S.
Consider again specification Π:

$$p \leftarrow K p$$

and two sets:

$$W_1 = \{\}$$
$$W_2 = \{\{p\}\}.$$

As before

$$\Pi^{W_1} = \emptyset$$

But

$$\Pi^{W_2} = \{p \leftarrow p\}$$

W_1 is the only world view of Π!
The new logic may allow a more adequate formalization of the closed world assumption: *if p is not known to be true it is false*. Consider a statement

\[p \lor q \]

together with CWA for p. Clearly, p is not known to be true, hence it is false, and the agent beliefs are

\[S = \{\neg p, q\} \]

An ASP representation of CWA does not produce this answer. However if we write CWA as

\[\neg p \leftarrow \neg K p \]

The resulting program defines the expected world view, S.
Another version of CWA can be formulated as: *if p may not be believed then it is false.*

This can be written as

\[\neg p \leftarrow \neg M p \]

or equivalently as

\[\neg p \leftarrow K \neg \text{not } p \]

This, together with

\[p \text{ or } q \]

has the world view,

\[A = \{ \{ p \}, \{ q \} \} \]

The old definition gives another, unintended world view

\[B = \{ \{ q, \neg p \} \}. \]
A specification

\[p \leftarrow \neg M q \]
\[q \leftarrow \neg M p \]

is equivalent to

\[p \leftarrow K \text{not} q \]
\[q \leftarrow K \text{not} p \]

World views:

\[S_1 = \{\{p\}\} \]
\[S_2 = \{\{q\}\} \]
\[S_3 = \{\{p\}, \{q\}\} \]
A specification

\[p \leftarrow \neg Kp \]

as expected, has no world views.

A specification

\[p \leftarrow Mp \]

has two world views:

\[S_1 = \{\} \]
\[S_2 = \{p\} \]
The new definition seems to better model our introspective reasoning than the old one. Further study is needed to see if this model is fully adequate.

Questions:

• Conditions for existence and uniqueness of world view, and other mathematical properties.

• Algorithms.

• Good definition of supportedness.

• Applications, e.g. to conformant planning, probabilistic reasoning, etc.