A Theory of Timed Automata....Kaboom!

Speaker: Sandeep Chintabathina
Papers used

Talk outline

• Introduction
• ω-automata
• Timed automata
• Timed regular languages
• Verification using timed automata
Introduction

• The goal of this research is to use automata for the specification and verification of systems.

• When reasoning about systems it is possible to abstract away from time and retain only the sequence of events - qualitative temporal reasoning.

• A sequence of events (trace) describes a valid behavior of the system.

• A set of such event sequences constitutes all valid behaviors of the system.

• Since the set of sequences is a formal language, we can use automata theory for specification and verification of systems.
Introduction

• Finite automata and a variety of competing formalisms are capable of manipulating and analyzing system behavior.

• In particular we will look at ω-automata because it is capable of describing traces that are infinite.

• But these formalisms are limited to qualitative reasoning only.

• When reasoning about systems such as airplane control systems or toasters correct functioning depends on real time considerations - quantitative reasoning is needed.

Objective: Specify and verify real-time systems by modifying finite automata

Outcome: A theory of timed automata
Introduction

- Timing information can be added to an event trace by pairing it with a sequence of times.
- The i’th element of time sequence gives the time of occurrence of i’th event in the event sequence.
- Fundamental question: what is the nature of time?
- *Discrete-time* model and *Dense-time* model.
Introduction

• Discrete-time model requires the time sequence to be monotonically increasing sequence of integers.

• It is possible to reduce a timed trace into a untimed trace.

• Timed trace (e1:1),(e2:4),(e3:6)..... can be reduced to the untimed trace e1,silent,silent,e2,silent,e6......

• The time of each event is same as its position.

• This behavior can be modeled using finite automata.
Introduction

Drawbacks of discrete model:

- Events do not always take place at integer-valued times.

- Continuous time must be approximated limiting the accuracy with which systems are modeled.
Introduction

- Dense-time model is a more natural model for physical processes operating over continuous time.
- Times of events are real numbers which increase monotonically without bounds.
- Cannot use finite automata because it is not obvious how to transform dense-time traces into untimed traces.
- For this reason a theory of timed languages and timed automata was developed.
Introduction

Timed automata can capture interesting aspects of real-time systems:

- qualitative features - liveness, fairness, nondeterminism.
- quantitative features - periodicity, bounded response, timing delays.
\(\omega \)-automata

- \(\omega \)-language consists of infinite words.
- \(\omega \)-language over a finite alphabet \(\Sigma \) is a subset of \(\Sigma^\omega \) - the set of all infinite words over \(\Sigma \).
- \(\omega \)-automata provides a finite representation for \(\omega \)-languages.
- It is a nondeterministic finite automata with acceptance condition modified to handle infinite input words.
- We will consider a type of \(\omega \)-automata called Buchi automata.
Transition table

- A transition table A is a $\langle \Sigma, S, S_0, E \rangle$ where Σ is a set of input symbols, S is a finite set of states, $S_0 \subseteq S$ is a set of start states and $E \subseteq S \times S \times \Sigma$ is a set of edges.

- If $\langle s, s', a \rangle \in E$ then automaton can change state from s to s' reading the input symbol a.
Run of A

- For a word $\sigma = \sigma_1\sigma_2...$ over alphabet Σ, we say that

 $$r : s_0 \xrightarrow{\sigma_1} s_1 \xrightarrow{\sigma_2} s_2 \xrightarrow{\sigma_3} ...$$

 is a run of A over σ provided $s_0 \in S_0$ and $\langle s_{i-1}, s_i, \sigma_i \rangle \in E$ for all $i \geq 1$.

- For such a run the set $\text{inf}(r)$ consists of states $s \in S$ such that $s = s_i$ for infinitely many $i \geq 0$.
Buchi automaton

- A *Buchi automaton* A is a transition table $\langle \Sigma, S, S_0, E \rangle$ along with additional set $F \subseteq S$ of accepting states.

- A run of A over a word σ is an *accepting run* iff
 \[\inf(r) \cap F \neq \emptyset \]

- The language $L(A)$ accepted by the A is
 \[L(A) = \{ \sigma \mid \sigma \in \Sigma^\omega \land A \text{ has an accepting run over } \sigma \} \]
Buchi Automaton

Figure 1: Büchi automaton accepting \((a + b)^*a^\omega\)
Properties of Buchi Automata

- An ω-language is called ω-regular iff it is accepted by some Buchi automaton.
- The class of ω-regular languages are closed under all boolean operations.
- If Buchi automaton is used for modeling finite state concurrent systems, the verification problem reduces to that of language inclusion. But it leads to exponential blow-up in number of states.
- However, the inclusion problem for deterministic automaton takes only polynomial time.
- The class of languages accepted by deterministic Buchi automaton is strictly smaller than the class of ω-regular languages.
Timed languages

- A timed word is formed by coupling a real-valued time with each symbol in a word.

- The behavior of a real-time system corresponds to a timed word over the alphabet of events.

- A time sequence $\tau = \tau_1 \tau_2 \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}$ with $\tau_i > 0$, satisfying the constraints:

 - **Monotonocity**: τ increases strictly monotonically $\tau_i < \tau_{i+1}$ for all $i \geq 1$.

 - **Progress**: For every $t \in \mathbb{R}$, there is some $i \geq 1$ such that $\tau_i > t$
Timed languages

- A timed word over an alphabet Σ is a pair (σ, τ) where $\sigma = \sigma_1\sigma_2 \ldots$ is an infinite word over Σ and τ is a time sequence.
- A timed language over Σ is a set of timed words over Σ.
- Example: Let $\Sigma = \{a, b\}$ and language L_1 consists of all timed words (σ, τ) such that there is no b after time 5.6

$$L_1 = \{(\sigma, \tau) \mid \forall i.((\tau_i > 5.6) \rightarrow (\sigma_i = a))\}$$

Given timed language L over Σ

$$Uptime(L) = \{\sigma \mid \sigma \in \Sigma^\omega \land (\sigma, \tau) \in L\}$$

$Uptime(L_1) = (a + b)^* a^\omega$
Timed Transition tables

- They are extension of transition tables to read timed words.
- In this table, a transition depends upon the input symbol as well as the time of the input symbol relative to the times of previously read symbols.
- For this reason, a finite set of (real valued) clocks are associated with each table.
- The set of clocks can be viewed as set of stop-watches that can be reset and checked independently of one another, but all of them refer to the same clock.
- A clock constraint is associated with each transition and only when the current clock values satisfy this constraint will a transition be taken.
Example timed transition table

Figure 3: Example of a timed transition table
Example timed transition table

The timing constraint expressed by the transition table is that the delay between a and the following b is always less than 2; more formally the language is

$$
\{(ab)^\omega, \tau \mid \forall i. (\tau_{2i} < \tau_{2i-1} + 2)\}
$$
Timed transition table with two clocks

![Timed transition table with two clocks](image)

Figure 4: Timed transition table with 2 clocks
Timed transition table with 2 clocks

The table uses two clocks and accepts the language

\[\{(abcd)\omega, \tau) | \forall j. ((\tau_{4j+3} < \tau_{4j+1} + 1) \land (\tau_{4j+4} > \tau_{4j+2} + 2))\}\]

The clock constraints ensure that the time delay between \(c\) and preceding \(a\) is less than 1 and the time delay between \(d\) and preceding \(b\) is greater than 2.
Clock constraints and clock interpretations

• For a set X of clock variables, the set $\Phi(X)$ of clock constraints δ is defined inductively by

$$\delta := x \leq c \lor c \leq x \lor \neg\delta \lor \delta_1 \land \delta_2$$

where $x \in X$ and $c \in R$.

• Constraints such as $true$, $x = c$, $x \in [2, 5)$ are considered abbreviations.

• A clock interpretation v for a set X of clocks is a mapping from X to R.

• Clock interpretation v for X satisfies a clock constraint δ iff δ evaluates to true using the value given by v.
Clock interpretations

Here we introduce some notation

- For $t \in \mathbb{R}$, $v + t$ denotes the clock interpretation which maps every clock x to the value $v(x) + t$

- For $Y \subseteq X$, $[Y \to t]v$ denotes the clock interpretation for X which assigns t to each $x \in Y$, and agrees with v over the rest of the clocks.
Timed Transition tables

A timed transition table \(A \) is a \(\langle \Sigma, S, S_0, C, E \rangle \), where

- \(\Sigma \) is a finite alphabet
- \(S \) is a finite set of states
- \(S_0 \subseteq S \) is a set of start states
- \(C \) is a finite set of clocks
- \(E \subseteq S \times S \times \Sigma \times 2^C \times \Phi(C) \) gives the set of transitions.

An edge \(\langle s, s', a, \lambda, \delta \rangle \) represents transition from state \(s \) to \(s' \) on input symbol \(a \). \(\lambda \) is the set of clocks that will be reset and \(\delta \) is a clock constraint.
Run of a timed transition table

We will define the transitions of a timed table by defining runs.

A run r, denoted by $\langle \bar{s}, \bar{v} \rangle$, of a timed transition table $\langle \Sigma, S, S_0, C, E \rangle$ over a timed word (σ, τ) is an infinite sequence of the form

$$r : \langle s_0, v_0 \rangle \xrightarrow{\sigma_1 \tau_1} \langle s_1, v_1 \rangle \xrightarrow{\sigma_2 \tau_2} \langle s_2, v_2 \rangle \xrightarrow{\sigma_3 \tau_3} \ldots$$

with $s_i \in S$ and $v_i \in [C \rightarrow R]$, for all $i \geq 0$, satisfying the requirements

- **Initiation:** $s_0 \in S_0$, and $v_0(x) = 0$ for all $x \in C$.

- **Consecution:** for all $i \geq 1$, there is an edge in E of the form $\langle s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i \rangle$ such that $v_{i-1} + \tau_i - \tau_{i-1}$ satisfies δ_i and v_i equals $[\lambda_i \rightarrow 0](v_{i-1} + \tau_i - \tau_{i-1})$.
Timed transition table with two clocks

Figure 4: Timed transition table with 2 clocks
Example run

Consider a timed word corresponding to example shown above.

\((a, 2), (b, 2.7), (c, 2.8), (d, 5), \ldots\)

An initial segment of the run is as follows. The clock interpretation is represented by listing values \([x, y]\).

\[
\langle s_0, [0, 0] \rangle \xrightarrow{\frac{a}{2}} \langle s_1, [0, 2] \rangle \xrightarrow{\frac{b}{2.7}} \langle s_2, [0.7, 0] \rangle \xrightarrow{\frac{c}{2.8}} \langle s_3, [0.8, 0.1] \rangle \xrightarrow{\frac{d}{5}} \langle s_0, [3, 2.3] \rangle
\]

The set \(\text{inf}(r)\) is the set of all \(s \in S\) such that \(s = s_i\) for infinitely many \(i \geq 0\).
Timed regular languages

- A timed Buchi automaton (TBA) is a tuple
 \(\langle \Sigma, S, S_0, C, E, F \rangle \), where \(\langle \Sigma, S, S_0, C, E \rangle \) is a timed transition table and \(F \subseteq S \) is set of accepting states.

- A run \(r = (\bar{s}, \bar{v}) \) of a TBA over timed word \((\sigma, \tau) \) is called an accepting run iff \(\inf(r) \cap F \neq \emptyset \).

- The language \(L(A) \) of timed words accepted by \(A \) is the set

 \[\{(\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau)\} \]

The class of timed languages accepted by TBA are called timed regular languages.
Example of a Timed automaton

Figure 6: Timed automaton specifying periodic behavior
Example of a Timed automaton

The automaton shown above accepts the following language over the alphabet \{a, b\}.

\[\{(\sigma, \tau) \mid \forall i. \exists j (\tau_j = 3i \land \sigma_j = a)\}\]

The automaton requires that whenever clock equals 3 there is an \(a\) symbol. Therefore \(a\) happens at all time values that are multiples of 3.
Verification example

Figure 16: TRAIN
Verification example

Figure 17: GATE
Verification example

![Diagram of a controller](image)

Figure 18: CONTROLLER
Correctness requirements

Implementation of the system is [TRAIN || GATE || CONTROLLER]

Specification of the system:

- Safety: Whenever the train in inside the gate, the gate should be closed.

- Liveness: The gate is never closed at a stretch for more than 10 minutes.
Correctness requirements

Figure 19: Safety property
Correctness requirements

Figure 20: Real-time liveness property