Extending the Role of Causality in Probabilistic Modeling

Joost Vennekens, Marc Denecker, Maurice Bruynooghe

{joost, marcd, maurice}@cs.kuleuven.be
K.U. Leuven, Belgium
Causality

- Causality is **central concept** in much of human knowledge & reasoning
- What is its role in **probabilistic modeling**?

Bayesian networks

- Acyclic Bayesian networks can be given causal interpretation [Pearl, 2000]
- Seems to be important part of success of this language
- However, Bayesian networks are not **inherently** causal
 - Formally: probabilistic independencies, conditional probabilities
 - Causal interpretation is no longer possible for cyclic nets

In this talk, we will

- Present language with causality at the **heart** of its semantics
- Analyse its properties, especially compared to Bayesian nets
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
Basic construct

Express both

- **Causal** relations between propositions
- **Probabilistic events**

Conditional probabilistic event (CP-event)

If propositions b_1, \ldots, b_n hold, then a probabilistic event will happen that causes at most one of propositions h_1, h_2, \ldots, h_m, where the probability of h_1 being caused is α_1, the probability of h_2 is α_2, \ldots, and the probability of h_m is α_m (with $\sum_i \alpha_i \leq 1$).

$$(h_1 : \alpha_1) \lor \cdots \lor (h_m : \alpha_m) \leftarrow b_1, \ldots, b_n.$$
Combining CP-events

- Meaning of single CP-event is clear
- But what does a set of CP-events mean?
- Terminology:
 - Set of CP-events is called CP-theory
 - Language of CP-theories is CP-logic
- Meaning of CP-theory is based on two fundamental principles
 - Principle of independent causation
 - Principle of no deus ex machina effects
Principle of independent causation

Every CP-event represents an independent causal process

- Learning outcome of one CP-event
 - May give information about whether another CP-event happens
 - But not about the outcome of another CP-event

- Crucial to have modular representation, that is elaboration tolerant w.r.t. adding new causes

- Compact representation of relation between effect and a number of independent causes for this effect

- Make abstraction of order in which CP-events are executed
No deus ex machina principle

Nothing happens without a cause

- Fundamental principle of causal reasoning
- Especially important for cyclic causal relations
- Compact representations
 - Cases where there is no cause for something can simply be ignored
Semantics

Under these two principles, CP-theory constructively defines probability distribution on interpretations.

Constructive process

- Simulate CP-event $(h_1 : \alpha_1) \lor \cdots \lor (h_m : \alpha_m) \leftarrow b_1, \ldots, b_n$.
 - Derive h_i with α_i
 - Derive nothing with $1 - \sum \alpha_i$
- Is only allowed if
 - All preconditions b_1, \ldots, b_n have already been derived
 - Event has not been simulated before
- Start from $\{\}$ and simulate as many CP-events as possible

Probability of interpretation is probability of being derived by this process.
Semantics

Theorem

The order in which CP-events are simulated does not matter, i.e., all sequences give same distribution

This follows from:

- Principle of independent causation
- Once preconditions are satisfied, they remain satisfied

Two principles are incorporated into semantics

- Independent causation principle
 - A CP-event always derives h_i with probability α_i
- “No deus ex machina” principle
 - Atom is only derived when it is caused by a CP-event with satisfied preconditions
An example

There are two causes for HIV infection: intercourse with infected partner (0.6) and blood transfusion (0.01). Suppose that a and b are partners and a has had a blood transfusion.

\[
\begin{align*}
(hiv(a) : 0.6) &\leftarrow hiv(b). \\
(hiv(b) : 0.6) &\leftarrow hiv(a). \\
(hiv(a) : 0.01).
\end{align*}
\]

- Principle of independent causation
 - Clear, modular, compact representation
 - Elaboration tolerant, e.g., add $(hiv(b) : 0.01)$.
- “No deus ex machina”-principle
 - Cyclic causal relations
 - No need to mention that HIV infection is impossible without transfusion or infected partner
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
Negation

- **Negated** atoms also allowed as preconditions
- Absence of a cause for an atom can cause some other atom
 - Absence of a cause for termination of fluent causes it to persist
 - Absence of a cause for winning/losing game causes it to continue
- Makes representation more **compact**
- But causes **problem** with semantics
 - It is no longer the case that true preconditions remain true, so order of CP-events might matter
 - \((\text{heads} : 0.5) \leftarrow \text{toss.} \)
 - \(\text{win} \leftarrow \neg \text{heads.} \)
 - However, we don’t want to force explicit use of time
 - Most reasonable convention: execute event depending on \(\neg p\) only after all possible causes for \(p\) have been exhausted
Formal solution (for now)

Stratified CP-theories

- Assign level $lvl(p) \in \mathbb{N}$ to each atom p
- Such that for all rules r
 - If $h \in head_{At}(r)$, $b \in body_{+}(r)$, then $lvl(h) \geq lvl(b)$
 - If $h \in head_{At}(r)$, $b \in body_{-}(r)$, then $lvl(h) > lvl(b)$
- Level of r is $\min_{p \in At(r)} lvl(p)$

- Execute rules with lowest level first
 - By the time we get to rule with precondition $\neg p$, all events that might cause p have already been executed
 - If p has not been derived, it never will
Formal definition of CP-logic

- A CP-theory is a **stratified** set of rules of the form:

 \[(h_1 : \alpha_1) \lor \cdots \lor (h_m : \alpha_m) \leftarrow b_1, \ldots, b_n.\]

- With \(h_i\) atoms, \(b_i\) literals, \(\alpha_i \in [0, 1]\) with \(\sum_i \alpha_i \leq 1\)

- A rule \((h : 1) \leftarrow b_1, \ldots, b_n\). is written as \(h \leftarrow b_1, \ldots, b_n\).
Probabilistic transition system

\[(h_1 : \alpha_1) \vee \cdots \vee (h_m : \alpha_m) \leftarrow b_1, \ldots, b_n.\]

- Tree structure \(\mathcal{T}\) with probabilistic labels
- Interpretation \(\mathcal{I}(c)\) for each node \(c\) in \(\mathcal{T}\)
- Node \(c\) executes rule \(r\) if children are \(c_0, c_1, \ldots, c_n\)
 - for \(i \geq 1\), \(\mathcal{I}(c_i) = \mathcal{I}(c) \cup \{h_i\}\) and \(\lambda(c, c_i) = \alpha_i\)
 - \(\mathcal{I}(c_0) = \mathcal{I}(c)\) and \(\lambda(c, c_0) = 1 - \sum_i \alpha_i\)
- Rule \(r\) is executable in node \(c\) if
 - \(\mathcal{I}(c) \models r\), i.e., \(\text{body}_+(r) \subseteq \mathcal{I}(c)\) and \(\text{body}_-(r) \cap \mathcal{I}(c) = \{\}\)
 - No ancestor of \(c\) already executes \(r\)
Formal semantics of CP-logic

- System \mathcal{I} runs CP-theory C
 - $\mathcal{I}(\text{root}) = \{\}$
 - Every non-leaf c executes executable rule $r \in C$ with minimal level
 - No rules are executable in leaves
- Probability of $P_\mathcal{I}(c)$ of leaf c is $\prod_{(a,b) \in \text{root}..c} \lambda(a, b)$
- Probability of $\pi_\mathcal{I}(I)$ of interpretation I is $\sum_{\mathcal{I}(c)=I} P_\mathcal{I}(c)$

Theorem
Every \mathcal{I} that runs a CP-theory C has the same $\pi_\mathcal{I}$

- We denote this unique $\pi_\mathcal{I}$ by π_C
- Defines formal semantics of C
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
A Bayesian network expresses

- Conditional probabilities
- Probabilistic independencies

For all nodes m, n, such that n is not a successor of m, n and m are independent given value for $\text{Parents}(m)$

Can these independencies also be expressed in CP-logic?
Probabilistic independencies in CP-logic

- When can learning the truth of p give direct information about q?
 1. p is a precondition to event that might cause q
 \[\exists r : p \in \text{body}(r) \text{ and } q \in \text{head}_{At}(r) \]
 2. p and q are alternative outcomes of the same CP-event
 \[\exists r : p, q \in \text{head}_{At}(r) \]
- p directly affects q iff (1) or (2) holds
- p affects $q = \text{transitive closure}$

Theorem
If p does not affect q, then p and q are independent, given an interpretation for the atoms r that directly affect p

Independencies of Bayesian network w.r.t. "is parent of"-relation = independencies of CP-theory w.r.t. "directly affects"-relation
(burg : 0.1).
(alarm : 0.9) ← burg, earthq.
(alarm : 0.8) ← burg, ¬earthq.
(earthq : 0.2).
(alarm : 0.8) ← ¬burg, earthq.
(alarm : 0.1) ← ¬burg, ¬earthq.

Can be extended to a general way of representing Bayesian networks in CP-logic
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
Motivation

- CP-logic can express probabilistic knowledge in the same way as Bayesian networks
- Often, this is not the most natural way
- Differences show role of causality
- Arise from the two principles of CP-logic
 - Principle of independent causation
 - Independent causes for the same effect
 - “No deus ex machina”-principle
 - Cyclic causal relations
 - Ignoring cases where nothing happens
Independent causes for the same effect

Consider a game of Russian roulette with two guns, one in the player’s right hand and one in his left. Each of the guns is loaded with a single bullet. What is the probability of the player dying?

\[
\begin{align*}
\text{(death : 1/6)} & \leftarrow \text{fire(left
gun)}. \\
\text{(death : 1/6)} & \leftarrow \text{fire(right
gun)}. \\
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>left, right</th>
<th>¬ left, right</th>
<th>left, ¬ right</th>
<th>¬ left, ¬ right</th>
</tr>
</thead>
<tbody>
<tr>
<td>death</td>
<td>11/36</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
</tr>
</tbody>
</table>
Independent causes for the same effect (2)

\[(\text{death} : 1/6) \leftarrow \text{fire(left_gun)}.\]
\[(\text{death} : 1/6) \leftarrow \text{fire(right_gun)}.\]

<table>
<thead>
<tr>
<th></th>
<th>left, right</th>
<th>\neg left, right</th>
<th>left, \neg right</th>
<th>\neg left, \neg right</th>
</tr>
</thead>
<tbody>
<tr>
<td>death</td>
<td>11/36</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
</tr>
</tbody>
</table>

- Independence between causes for death is **structural** property
 - \(\text{fire(left_gun)}, \text{fire(right_gun)}\) not in same body
 - \(11/36 = 1/6 + 1/6 - 1/6 \cdot 1/6\)

Qualitative ↔ quantitative knowledge

- Treated differently, e.g., qualitative knowledge is more robust
- Different origins, e.g.,
 - Quantitative: derived from data
 - Qualitative: from background knowledge about domain
Independent causes for the same effect (3)

\[\text{death} : 1/6 \leftarrow \text{fire(left_gun)}. \]
\[\text{death} : 1/6 \leftarrow \text{fire(right_gun)}. \]

<table>
<thead>
<tr>
<th></th>
<th>left, right</th>
<th>¬ left, right</th>
<th>left, ¬ right</th>
<th>¬ left, ¬ right</th>
</tr>
</thead>
<tbody>
<tr>
<td>death</td>
<td>11/36</td>
<td>1/6</td>
<td>1/6</td>
<td>0</td>
</tr>
</tbody>
</table>

- Probabilities are **causal** rather than **conditional**
 - More informative: Conditional can be derived from causal
 - Using causal probabilities is more compact
 - For \(n \) guns: \(n \) versus \(2^n \) entries
 - (Can be partly avoided by introducing new nodes)

- **Elaboration tolerance** w.r.t. adding new causes
 - Player can get heart attack: \(\text{death} : 0.1 \).
Cyclic causal relations

HIV infection

\[
\begin{align*}
(hiv(X) : 0.6) & \leftarrow hiv(Y), \text{partners}(X, Y). \\
(hiv(X) : 0.01) & \leftarrow \text{blood_transfusion}(X).
\end{align*}
\]

- For partners \(a\) and \(b\):
 \[
 (hiv(a) : 0.6) \leftarrow hiv(b).
 \]
 \[
 (hiv(b) : 0.6) \leftarrow hiv(a).
 \]

- **“No deus ex machina”-principle**
 - If no external causes, then neither \(a\) nor \(b\) is infected
 - If \(a\) undergoes blood transfusion, \(a\) is infected with \(0.01\) and \(b\) with \(0.01 \times 0.6\)
 - If both \(a\) and \(b\) have blood transfusion, \(a\) is infected with \(0.01 + 0.01 \times 0.6\)

- Cyclic causal relations require no special treatment
Cyclic causal relations in Bayesian networks

- New nodes $ext(x)$: x has been infected by an external cause

\[
\begin{align*}
\text{bloodtrans}(b) & \rightarrow \text{ext}(b) \rightarrow \text{hiv}(b) \\
\text{bloodtrans}(a) & \rightarrow \text{ext}(a) \rightarrow \text{hiv}(a)
\end{align*}
\]

- $P(ext(a) \mid bloodtrans(a)) = 0.01$
- $P(hiv(a) \mid \neg ext(a), \neg ext(b)) = 0$
- $P(hiv(a) \mid \neg ext(a), ext(b)) = 0.6$
- $P(hiv(a) \mid ext(a), \neg ext(b)) = 1$
- $P(hiv(a) \mid ext(a), ext(b)) = 1$
Ignoring cases where nothing happens

In craps, one keeps on rolling a pair of dice until one either wins or loses. In the first round, one immediately wins by rolling 7 or 11 and immediately loses by rolling 2, 3, or 12. If any other number is rolled, this becomes the player’s so-called “box point”. The game then continues until either the player wins by rolling the box point again or loses by rolling a 7.

(\text{roll}(T+1, 2) : \frac{1}{12}) \lor \cdots \lor (\text{roll}(T+1, 12) : \frac{1}{12}) \leftarrow \neg \text{win}(T), \neg \text{lose}(T).

\text{win}(1) \leftarrow \text{roll}(1, 7).
\text{win}(1) \leftarrow \text{roll}(1, 11).
\text{lose}(1) \leftarrow \text{roll}(1, 2).
\text{lose}(1) \leftarrow \text{roll}(1, 3).
\text{lose}(1) \leftarrow \text{roll}(1, 12).

\text{boxpoint}(X) \leftarrow \text{roll}(1, X), \neg \text{win}(1), \neg \text{lose}(1).

\text{win}(T) \leftarrow \text{boxpoint}(X), \text{roll}(T, X), T > 1.

\text{lose}(T) \leftarrow \text{roll}(T, 7), T > 1.
Ignoring cases where nothing happens (2)

\[
\begin{align*}
\text{Craps} \\
(\text{roll}(T+1, 2) : \frac{1}{12}) \lor \cdots \lor (\text{roll}(T+1, 12) : \frac{1}{12}) & \leftarrow \neg \text{win}(T), \neg \text{lose}(T). \\
\text{win}(T) & \leftarrow \ldots \\
\text{lose}(T) & \leftarrow \ldots
\end{align*}
\]

- Only specify when game is won or lost
- Negation is used to express that game continues otherwise
- The “otherwise”-cases do not need to be explicitly mentioned

<table>
<thead>
<tr>
<th>state_t</th>
<th>(4, 2)</th>
<th>(4, 3)</th>
<th>(4, 4)</th>
<th>(4, 5)</th>
<th>(4, 6)</th>
<th>(4, 7)</th>
<th>(4, 8)</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Win</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>Lose</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>Neither</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
An alternative semantics

- An instance of a CP-theory is a normal logic program that results from making a number of independent probabilistic choices.
 - For each rule \((h_1 : \alpha_1) \lor \cdots \lor (h_n : \alpha_n) \leftarrow \text{body}\):
 - Replace rule by \(h_i \leftarrow \text{body}\) with probability \(\alpha_i\).
 - Remove rule with probability \(1 - \sum_i \alpha_i\).
- Interpret such an instance by well-founded semantics.
- Probability of \(I\) is the sum of the probabilities of all instances that have \(I\) as their well-founded model.

Theorem

This probability distribution is the same as \(\pi_C\).
An alternative semantics (2)

Historical note

Instance-based semantics was defined first, for Logic Programs with Annotated Disjunctions (LPADs). The interpretation of rules as CP-events and link to causality were discovered later.

Usefulness

- Relax stratification condition
 - New characterization works for all CP-theories s.t. all instances have two-valued well-founded model
 - Weaker requirement
 - Not only static, syntactical stratification
 - But also dynamic, semantical stratification
- Clarify the relation between CP-logic and logic programming
Normal logic programs

\[h \leftarrow b_1, \ldots, b_m. \]

- For normal logic program \(C \), \(\pi_C(wfm(C)) = 1 \)

Intuitive meaning of rule

If propositions \(b_1, \ldots, b_n \) hold, then an event will happen that causes \(h \)

- Interesting link between WFS and causality
 - [Denecker, Ternovska, 2005]: WFS is used to deal with causal ramifications in situation calculus

- WFS formalizes inductive definitions [Denecker, 1998]
 Inductive definition is set of deterministic causal events
Disjunctive logic programs

\[h_1 \lor \cdots \lor h_n \leftarrow b_1, \ldots, b_m. \]

- Suppose every such rule represents CP-event
 \((h_1 : \alpha_1) \lor \cdots \lor (h_n : \alpha_n) \leftarrow b_1, \ldots, b_m\). with \(\sum_i \alpha_i = 1\)
- \{interpretation \(I \mid \pi_C(I) > 0\}\} does not depend on precise values of \(\alpha_i > 0\)
- This set gives possible world semantics for DLP

Intuitive meaning of rule

If propositions \(b_1, \ldots, b_n\) hold, then a non-deterministic event will happen that causes precisely one of \(h_1, h_2, \ldots, h_m\).

- Different from stable model semantics
 - Not about beliefs of an agent, but the outcome of causal events
- For stratified programs, identical to Possible Model Semantics [Sakama,Inoue]
Related work: P-log

Some differences

- **Focus**
 - CP-logic: only concerned with representing probability distribution
 - P-log: various kinds of updates
 - (It seems straightforward to define do-operator for CP-logic)
- In P-log, attributes have dynamic range
 - CP-logic only allows static enumeration of alternatives
- Probabilities are attached to
 - CP-logic: independent causes that might occur together
 - P-log: mutually exclusive circumstances, as in Bayesian networks
Introduction

Formal definition of CP-logic

Bayesian networks in CP-logic

The role of causality

The link to Logic Programming

Conclusion
Conclusion

- Study role of *causality* in probabilistic modeling
- **CP-logic**: sets of conditional probabilistic events
 - Principle of independent causation
 - Principle of no deus ex machina effects
- Can express same knowledge as *Bayesian networks*
- **Differences** in natural modeling methodology for
 - Independent causes for effect
 - Cyclic causal relations
 - Absence of a cause
- Different view on *Logic Programming*