REGULAR Logic Program

\[
penguin(tweety) \leftarrow \\
bird(tweety) \leftarrow \\
\text{flies}(tweety) \leftarrow \text{bird}(tweety), \neg \text{flies}(tweety). \\
\neg \text{flies}(tweety) \leftarrow \text{penguin}(tweety), \neg \text{flies}(tweety). \\
\]

ORDERED Logic Program

\[
penguin(tweety) \leftarrow \\
bird(tweety) \leftarrow \\
r1: \text{flies}(tweety) \leftarrow \text{bird}(tweety), \neg \text{flies}(tweety). \\
r2: \neg \text{flies}(tweety) \leftarrow \text{penguin}(tweety), \neg \text{flies}(tweety). \\
\]

Answer Set 1:
\{penguin(tweety), bird(tweety), flies(tweety)}

Answer Set 2:
\{penguin(tweety), bird(tweety), \neg flies(tweety)}

UNIQUE Answer Set:
\{penguin(tweety), bird(tweety), \neg flies(tweety)}
A logic program Π over \mathcal{A} is ordered if \mathcal{A} is partitioned into:

- A set A of regular atoms;
- A set \mathcal{E} of terms used as names for rules;
- A set \mathcal{F} of preference atoms "subsumes" \mathcal{E}, where $s,t \in \mathcal{E}$.

Statically Ordered Logic Program Π: (meta-level preferences)

\[
\Pi = \Pi' \cup \Pi''\]

where:

- Π is a logic program over \mathcal{A};
- $\Pi' \subseteq \{ (n(r) \gg (n(r')) \mid r,r' \in \Pi) \}$.

The answer sets of an ordered LP are called preferred answer sets.

Naming function $n: \Pi \rightarrow \mathcal{E}$.
Mapping Function T from Ordered LP, Π, to Regular LP:

a rule can be "applied" only if this is compatible with all preferences.

The application of a rule, r, is ok w.r.t. a rule, r', with higher preference if:

- r' was applied, or
- r' was blocked.

For any rule, $r \in \Pi$, $\tau(r)$ is defined as follows, and $T(\Pi) = \{ \tau(r) | r \in \Pi \}$

\begin{align*}
a1(r): \quad & \text{head}(r) \leftarrow \text{ap}(n(r)). \\
a2(r): \quad & \text{ap}(n(r)) \leftarrow \text{ok}(n(r)), \text{body}(r). \\
b1(r,L): \quad & \text{bl}(n(r)) \leftarrow \text{ok}(n(r)), \text{not } L^+. \\
b2(r,L): \quad & \text{bl}(n(r)) \leftarrow \text{ok}(n(r)), L^-. \\
c1(r): \quad & \text{ok}(n(r)) \leftarrow \text{ok}'(n(r),n(r_1)),...,\text{ok}'(n(r),n(r_k)). \\
c2(r,r'): \quad & \text{ok}'(n(r),n(r')) \leftarrow \text{not } (n(r) << n(r')). \\
c3(r,r'): \quad & \text{ok}'(n(r),n(r')) \leftarrow (n(r) << n(r')), \text{ap}(n(r')). \\
c4(r,r'): \quad & \text{ok}'(n(r),n(r')) \leftarrow (n(r) << n(r')), \text{bl}(n(r')). \\
t(r,r'',r'''): \quad & n(r)<<n(r'') \leftarrow (n(r)<<n(r')),(n(r')<<n(r'')). \\
as(r,r'): \quad & \neg(n(r')<<n(r)) \leftarrow n(r)<<n(r').
\end{align*}
penguin(tweety) ←
 bird(tweety) ←
 r1: flies(tweety) ← bird(tweety), not ¬flies(tweety).
 r2: ¬flies(tweety) ← penguin(tweety), not flies(tweety).
 n_r1 << n_r2 ←

flies(tweety) ← ap(n(r1)).
ap(n(r1)) ← ok(n(r1)), bird(tweety), not ¬flies(tweety).
bl(n(r1)) ← ok(n(r1)), not bird(tweety).
bl(n(r1)) ← ok(n(r1)), ¬flies(tweety).
ok(n(r1)) ← ok'(n(r1),n(r2)).
ok'(n(r1),n(r2)) ← not (n(r1)<<n(r2)).
ok'(n(r1),n(r2)) ← (n(r1)<<n(r2)), ap(n(r2)).
ok'(n(r1),n(r2)) ← (n(r1)<<n(r2)), bl(n(r2)).
Going to the Airport (1)

John can go to the airport either by car or by bus:

- two sets of actions: car–related actions and bus–related actions;
- initial state: at–home;
- final state: at–airport.

If it is possible to go to the airport both by car and by bus, John prefers the car.
% initial state
h(at−home,0).

% goal
goal(T) :- time(T), h(at−airport,T).
:- not goal(lasttime).

occurs(A,T) :- time(T), car_action(A),
going_by_car,
not goal(T),
not other_action(A,T).

occurs(A,T) :- time(T), bus_action(A),
going_by_bus,
not goal(T),
not other_action(A,T).

% choice between car & bus
r1: going_by_car :- not going_by_bus.
r2: going_by_bus :- not going_by_car.

% preference
n(r2) << n(r1).
Suppose that *normally* John prefers to use the car, but that he prefers the bus when it’s snowing.
References

James P. Delgrande, Torsten Schaub, Hans Tompits
Logic Programs with Compiled Preferences

James P. Delgrande, Torsten Schaub, Hans Tompits
plp – A compiler for logic programs with preferences