Nonmonotonic causal theories

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, Hudson Turner
Outline

• Introduction
• Syntax and Semantics
• Knowledge Representation
• C+ Language
• Theorems
Introduction

This paper
• Defines nonmonotonic causal theories (NCT)
• Investigate “definite” NCT
• Shows how they can be used for knowledge representation
• Introduces action language C+ based on NCT
• Compares NCT with related works
Syntax of Causal theory

• Multi-valued propositional signature: set of constants, \(c \), and their finite domains \(\text{Dom}(c) \)

Note: \(i : c \), \(i \) is nonnegative integer and \(c \) is constant.

• Atom: \(c = v \) where \(v \) is in \(\text{Dom}(c) \)

• Formula: a propositional combination of atoms. e.g. \(\text{Loc}_a = \text{table} \land \text{Loc}_b = \text{table} \)
Causal Rules

• **Causal rule:**

 \[F \leftarrow G, \text{ where } F \text{ and } G \text{ are formulas.} \]

 Causal theory: a set of causal rules.
Semantics
(Informal)

• $F \leftarrow G$: if G is true then there is a cause for F to be true.

Note that $F \leftarrow \top$ means that F is caused to be true while $\bot \leftarrow \neg F$ says that F is true.

• F is true in causal theory T if and only if F is caused by T
Examples

• Let c, d be boolean constants

• $T_1 = \{ c = t \iff \top. \ d = t \iff c = t. \}$

 Does T_1 entail $d = t$? Yes.

• $T_2 = \{ \bot \iff \neg c = t. \ d = t \iff c = t. \}$

 Does T_2 entail $d = t$? No.
Semantics

• An *interpretation* is a function that maps constants to elements of their domains.

• An interpretation I *satisfies* an atom $c = v$ (symbolically, $I \models c=v$) if $I(c) = v$.

• A *model* of a set of formulas is an interpretation that satisfies all formulas.
Semantics

- T^I: The reduct T^I of T relative to I is the set of the heads of all rules in T whose bodies are satisfied by I.
- I is a model of T if I is the unique model of T^I.
Examples

1. \(\sigma = \{ c \}, \text{Dom}(c) = \{ 1, 2, 3 \} \)
\(T_1: c = 1 \iff c = 1 \)
\(I(c) = 1; T^l = \{ c = 1 \}. \)

2. \(\sigma = \{ c, d \}, \text{Dom}(c) = \{ 1, 2, 3 \}; \text{Dom}(d) = \{ t, f \} \)
\(T_2: c = 1 \iff c = 1 \)
\(I(c) = 1; I(d) = t; T^l = \{ c = 1 \} \) note: \(I \) is not the unique model of \(T^l \)

3. \(\sigma = \{ c \}, \text{Dom}(c) = \{ 1, 2, 3 \} \)
\(T_3: c = 1 \iff c = 1, c = 2 \iff t. \)
\(I(c) = 2; T^l = \{ c = 2 \}. \)

4. \(\sigma = \{ c \}, \text{Dom}(c) = \{ 1, 2, 3 \} \)
\(T_4: c = 1 \iff c = 1, c = 2 \iff c = 2. \)
\(a. \quad I(c) = 1; T^l = \{ c = 1 \}. \)
\(b. \quad I(c) = 2; T^l = \{ c = 2 \}. \)
Definite theories

- Definition:
 A causal theory T is definite if
 - The head of every rule of T is an atom or \bot
 - No atom is the head of infinitely many rules of T
Completion Process

• There is a completion process that reduces the problem of finding a model of a definite causal theory to the problem of finding a model of a set of formulas.
Completion Process

• For each atom A whose domain is not a singleton, add formula
 \[A \equiv G_1 \lor \ldots \lor G_n \] where \(G_1, \ldots, G_n \) are the bodies of the rules of T with head A.

 (Do nothing for singleton formula)

 if \(n=0 \), add formula \(A \equiv \bot \).

• For each constraint \(\bot \leftarrow F \), add formula \(\neg F \).
Example of Completion

• Causal Theory T:

\[\sigma = \{ c, d \}, \ \text{Dom}(c) = \{ 1, \ldots, n \} \]

\[\text{Dom}(d) = \{ t, f \} \]

\[c=1 \iff c=1 \]
\[c=2 \iff c=2 \]
\[c=1 \iff d=t \]
\[c=3 \iff \top \]
\[d=t \iff d=t \]

\[c=1 \equiv c=1 \lor d=t \]
\[c=2 \equiv c=2 \]
\[c=3 \equiv \top \]
\[c=v \equiv \bot \ (v \in \text{Dom}(c) \backslash \{1,2,3\}) \]
\[d=t \equiv d=t \]
\[d=f \equiv \bot \]
Theorem

- The models of a definite causal theory are precisely the models of its completion.
Knowledge Representation

• Default reasoning
• Actions and changes
• Example: monkey and bananas
Default

- \(c=v \iff c=v \) can be used to express the default knowledge. Example:

\[\sigma = \{ c \}, \text{Dom}(c) = \{1, \ldots, n\} \]

1. \(T_1: c = v_1 \iff c = v_1 \)

\[T_1 \vdash c = v_1 \]

2. \(T_2: c = v_1 \iff c = v_1. \ c = v_2 \iff \top. \)

\[T_2 \vdash c = v_2; T_2 \vdash c \neq v_1 \]
Action and changes

1: \(p \leftarrow 0 : a \)

0: \(p \leftarrow 0 : p \).

0: \(\neg p \leftarrow 0 : \neg p \)

0: \(a \leftarrow 0 : a \).

0: \(\neg a \leftarrow 0 : \neg a \)

1: \(p \leftarrow (0 : p) \land (1 : p) \)

1: \(\neg p \leftarrow (0 : \neg p) \land (1 : \neg p) \)
The Models of the example

• \(M_1 = \{ 0:p=t, 0:a=t, 1:p=t \} \)
• \(M_2 = \{ 0:p=t, 0:a=f, 1:p=t \} \)
• \(M_3 = \{ 0:p=f, 0:a=t, 1:p=t \} \)
• \(M_4 = \{ 0:p=f, 0:a=f, 1:p=f \} \)

If we use \(i \) and \(i+1 \) instead of 0 and 1, for the length \(m \) (\(i < m \)), we will have \(2^{m+1} \) models.
Monkey and Banana (MB)

- **Signature:**
 \[i : \text{Loc}(x), \text{where } x \in \{ \text{Monkey, Bananas, Box} \} \]
 \[i : \text{HasBananas}, i : \text{OnBox} \]
 \[i : \text{walk}, i : \text{climbOn} \]
 \[i : \text{PushBox}(l), \text{where } l \in \{ L1, L2, L3 \} \]
 \[i : \text{climbOff}, i : \text{GraspBananas} \]
• $i + 1 : \text{Loc(Monkey)} = l \leftarrow i : \text{Walk}(l)$.
• $i + 1 : \text{HasBananas} \leftarrow i : \text{GraspBananas}$.
• $\perp \leftarrow i : (\text{GraspBananas} \land \neg \text{OnBox})$.
• $\perp \leftarrow i : (\text{GraspBananas} \land \text{Loc(Monkey)} \neq \text{Loc(Banans)})$.
• $i + 1 : \text{Loc(Box)} = l \leftarrow i : \text{PushBox}(l)$.
• $i + 1 : \text{Loc(Monkey)} = l \leftarrow i : \text{PushBox}(l)$.
•
Reasoning and planning

• Prediction:

Given the complete MB theory, we know, initially the monkey is at L₁, the bananas are at L₂, and the box is at L₃. The monkey walks to L₃ then pushes the box to L₂. Are the bananas and the box at the same location?

\[((0:\text{Loc}(\text{monkey})=L_1 \land (0: \text{Loc}(\text{Bananas})=L_2) \land (0: \text{Loc}(\text{Box})=L_3) \land (0: \text{Walk}(L_3)) \land (1: \text{PushBox}(L_2)) \rightarrow 2: (\text{Loc}(\text{Monkey})=\text{Loc}(\text{Bananas}) \land \text{Loc}(\text{Bananas})=\text{Loc}(\text{Box})). \]
Reasoning and planning

• Postdiction

The monkey walked to location L_3 and pushed the box. Does it follow that the box was initially at L_3

$$[(0: \text{Walk}(L_3) \land (1: \forall \text{PushBox}(l))] \rightarrow 0: \text{Loc}(\text{Box})=L_3$$
Reasoning and planning

• Planning

Initial states:
0:Loc(Monkey) = L₁, 0:Loc(Bananas) = L₂, 0:Loc(Box) = L₃

• Goal:

m:HasBananas

• The shortest plan:

0:Walk(L₃), 1:PushBox(L₂), 2:ClimbOn, 3:GraspBananas.
Definitions of C+

Static determined fluent: only appears at the head of static causal laws
Fluent formula: all constants occurring in it are fluent constants.
Action formula: at least one action constant and no fluent constants.
Syntax in C+

- Static laws: *caused F if G*
- Action dynamic law: *caused A if H*
- Fluent dynamic law: *caused F if G after H*
- *exogenous c*
- *inertial p*

where *F and G are fluent formulas, A is an action formula, H is a formula, c is an action constant, p is a simple fluent constant*
Translation

• caused F if G \rightarrow $i:F \leftarrow i:G$

• caused F if G after H \rightarrow $i+1:F \leftarrow i+1:H \wedge i:G$

• exogenous c \rightarrow $i:c=v \leftarrow i:c =v$

• inertial p \rightarrow $i+1:p=v \leftarrow i+1:p=v \wedge i:p=v$

• For every simple fluent constant c and every v in $Dom(c)$. Add $0:c=v \leftarrow 0 :c=v$
Example of C+

\(a \) causes \(p \)

exogenous \(a \)

inertial \(p \)
Theorems

• An interpretation I is a model of a causal Theory T if and only if, for every formula F,

\[I \models F \iff T^I \models F \]

• If a causal theory T contains a causal rule $F \leftarrow G$ then T entails $G \Rightarrow F$.
Theorems

• Let T_1 and T_2 be causal theories of a signature σ such that every rule in T_2 is a constraint. An interpretation of σ is a model of $T_1 \cup T_2$ iff it is a model of T_1 and does not violate any of the constraints in T_2

• The models of a definite causal theory are precisely the models of its completion.