On semantics of STRIPS
By Vladimir Lifschitz

Presented by Forrest Sheng Bao

KR Seminar, Dept. of Computer Science, Texas Tech University

Oct. 7, 2011
Outline

1. Introduction to STRIPS

2. Semantics of STRIPS

- It operates on world models, represented by sets of formulas of first-order logic.
- World model are changed by operators.
The STRIPS

- It operates on world models, represented by sets of formulas of first-order logic.
- World model are changed by operators.

It operates on world models, represented by sets of formulas of first-order logic.

World model are changed by operators.
Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A *world model* is any set of sentences of L.
- An *operator description* is a triple of sentences of L, $\langle P, D, A \rangle$
 - P: precondition
 - D: delete list
 - A: add list
Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A world model is any set of sentences of L.
- An operator description is a triple of sentences of L, $\langle P, D, A \rangle$
 - P: precondition
 - D: delete list
 - A: add list
Building blocks of STRIPS

- Start with an arbitrary first-order language L.
- A world model is any set of sentences of L.
- An operator description is a triple of sentences of L, $\langle P, D, A \rangle$
 - P: precondition
 - D: delete list
 - A: add list
A STRIPS system Σ consists of

- an initial world model M_0
- a set Op of symbols called operators
- a family of operator descriptions $\{P_\alpha, D_\alpha, A_\alpha\}_{\alpha \in Op}$
A STRIPS system Σ consists of

- an initial world model M_0
- a set Op of symbols called operators
- a family of operator descriptions $\{P_\alpha, D_\alpha, A_\alpha\}_{\alpha \in Op}$
A STRIPS system Σ consists of

- an initial world model M_0
- a set Op of symbols called operators
- a family of operator descriptions $\{P_\alpha, D_\alpha, A_\alpha\}_{\alpha \in Op}$
An example
modified from original STRIPS paper

operator $\text{pushto}(X, Y)$: robot pushes object X next to Y

- Precondition: $\text{pushable}(X) \land \text{nextto}(\text{robot}, X)$

- Delete list:
 - $\text{atrobot}($)
 - $\text{nextto}(\text{robot},$)
 - $\text{nextto}($, X)
 - $\text{at}(X,)$
 - $\text{nextto}(X,)$

- Add list: $\text{nextto}(X, Y)$, $\text{nextto}(Y, X)$, $\text{nextto}(\text{robot}, X)$
An example
modified from original STRIPS paper

operator \textit{pushto}(X, Y): robot pushes object X next to Y

- Precondition: \textit{pushable}(X) \land \textit{nextto}(\textit{robot}, X)

- Delete list:
 \textit{atrobot}($), \textit{nextto}(\textit{robot},$), \textit{nextto}($, X), \textit{at}(X,$), \textit{nextto}(X,$)

- Add list: \textit{nextto}(X, Y), \textit{nextto}(Y, X), \textit{nextto}(\textit{robot}, X)
An example
modified from original STRIPS paper

<table>
<thead>
<tr>
<th>Operator: \textit{pushto}(X, Y): robot pushes object X next to Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precondition: \textit{pushable}(X) \land \textit{nextto}(\textit{robot}, X)</td>
</tr>
<tr>
<td>Delete list: \textit{atrobot}($), \textit{nextto}(\textit{robot},$), \textit{nextto}($, X), \textit{at}(X, $), \textit{nextto}(X, $)</td>
</tr>
<tr>
<td>Add list: \textit{nextto}(X, Y), \textit{nextto}(Y, X), \textit{nextto}(\textit{robot}, X)</td>
</tr>
</tbody>
</table>
Plans in STRIPS

For a STRIPS system Σ, a plan is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.

A plan defines a sequence of world models M_0, M_1, \ldots, M_N, where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.

$\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.

We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.
Plans in STRIPS

- For a STRIPS system \(\Sigma \), a \textit{plan} is any finite sequence of its operators, denoted as \(\bar{\alpha} = (\alpha_1, \ldots, \alpha_N) \) where \(\alpha_i \in Op \), \(\forall i \in 1..N \).

- A plan defines a sequence of world models \(M_0, M_1, \ldots, M_N \), where \(M_0 \) is the initial world model and \(M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i} \), \(\forall i \in 1..N \).

- \(\bar{\alpha} \) is accepted by the system if \(M_{i-1} \models P_{\alpha_i}, \forall i \in 1..N \).

- We call \(M_N \) the result of executing \(\bar{\alpha} \) and denote it as \(R(\bar{\alpha}) \).
Plans in STRIPS

For a STRIPS system Σ, a plan is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.

A plan defines a sequence of world models M_0, M_1, \ldots, M_N, where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.

$\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.

We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.
plans in STRIPS

- For a STRIPS system Σ, a plan is any finite sequence of its operators, denoted as $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ where $\alpha_i \in Op$, $\forall i \in 1..N$.

- A plan defines a sequence of world models M_0, M_1, \ldots, M_N, where M_0 is the initial world model and $M_i = (M_{i-1} \setminus D_{\alpha_i}) \cup A_{\alpha_i}$, $\forall i \in 1..N$.

- $\bar{\alpha}$ is accepted by the system if $M_{i-1} \vdash P_{\alpha_i}$, $\forall i \in 1..N$.

- We call M_N the result of executing $\bar{\alpha}$ and denote it as $R(\bar{\alpha})$.
Interpreted STRIPS system

- The world described by language L at any instant is in a state.
- An action is a partial function from states to states.
- If $f(s)$ is defined, we say that f is applicable in state s and $f(s)$ is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_α.
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.
Interpreted STRIPS system

- The world described by language L at any instant is in a *state*.

- An action is a partial function from states to states.

- If $f(s)$ is defined, we say that f is *applicable* in state s and $f(s)$ is the result of action f.

- We assume that each operator α in STRIPS is associated with an action f_α.

- A STRIPS system along with the information above is called an *interpreted* STRIPS system.

- For each plan $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_\bar{\alpha}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.
Interpreted STRIPS system

- The world described by language L at any instant is in a state.
- An action is a partial function from states to states.
- If $f(s)$ is defined, we say that f is applicable in state s and $f(s)$ is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_α.
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.
Interpreted STRIPS system

- The world described by language L at any instant is in a state.
- An action is a partial function from states to states.
- If $f(s)$ is defined, we say that f is applicable in state s and $f(s)$ is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_α.
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_{\tilde{\alpha}}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.
Interpreted STRIPS system

- The world described by language L at any instant is in a state.
- An action is a partial function from states to states.
- If $f(s)$ is defined, we say that f is applicable in state s and $f(s)$ is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_α.
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.

Interpreted STRIPS system

- The world described by language L at any instant is in a state.
- An action is a partial function from states to states.
- If $f(s)$ is defined, we say that f is applicable in state s and $f(s)$ is the result of action f.
- We assume that each operator α in STRIPS is associated with an action f_α.
- A STRIPS system along with the information above is called an interpreted STRIPS system.
- For each plan $\bar{\alpha} = (\alpha_1, \ldots, \alpha_N)$ of an interpreted STRIPS system, we define $f_{\bar{\alpha}}$ to be the composite action $f_{\alpha_N} \ldots f_{\alpha_1}$.
Soundness

How sound is STRIPS in describing a world?

Definition A

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\).

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), and each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\).
Soundness

How sound is STRIPS in describing a world?

Definition A

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),

- every sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),

- \(A\) is satisfied in \(f(s)\).

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), and each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\).
Soundness

How sound is STRIPS in describing a world?

Definition A

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\).

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), and each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\).
Soundness

How sound is STRIPS in describing a world?

Definition A

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\).

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), and each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\).
Soundness

How sound is STRIPS in describing a world?

Definition A

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\).

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), and each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\).
Soundness cond.

Is this semantics good?
Problems

• Atoms in the delete list of $\text{pushto}(X,Y)$ are obviously not the only sentences that may become false after action execution.

• Their conjunction or disjunction, e.g., $\text{atrobot}(\$) \land \text{nextto}(X,\$)$, or any sentence of the form $A \land F$ (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.

• Can we limit sentences in delete list as atoms only?
Problems

- Atoms in the delete list of $\text{pushto}(X, Y)$ are obviously not the only sentences that may become false after action execution.

- Their conjunction or disjunction, e.g., $\text{atrobot}($) \land \text{nextto}(X, \text{}$), or any sentence of the form $A \land F$ (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.

- Can we limit sentences in delete list as atoms only?
Problems

- Atoms in the delete list of $\text{push}to(X, Y)$ are obviously not the only sentences that may become false after action execution.

- Their conjunction or disjunction, e.g., $\text{atrobot}($) \land \text{nextto}(X, \$)$, or any sentence of the form $A \land F$ (A is an atom in delete list and F is any sentence in L) is also a such sentence. By definition A, the delete list will be infinite.

- Can we limit sentences in delete list as atoms only?
Non-atomic sentences in world model

- Non-atomic sentences in world model will never be removed!
- Thus, they have to be satisfied in all states.
Non-atomic sentences in world model will never be removed!

Thus, they have to be satisfied in all states.
An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every atomic sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\) and every **non-atomic** sentence in \(A\) is satisfied in all states of the (future) world.

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\), and every **non-atomic** sentence in \(M_0\) is satisfied in all states of the world.
Second try on semantics

Definition B

An operator description \((P, D, A)\) is **sound** relative to an action \(f\) if, for every state \(s\) such that \(P\) is satisfied in \(s\),

- \(f\) is applicable in state \(s\),
- every atomic sentence that is satisfied in \(s\) and does not belong to \(D\) is satisfied in \(f(s)\),
- \(A\) is satisfied in \(f(s)\) and every **non-atomic** sentence in \(A\) is satisfied in all states of the (future) world.

\(\Sigma\) is sound if \(M_0\) is satisfied in the initial state \(s_0\), each operator description \((P_\alpha, D_\alpha, A_\alpha)\) is sound relative to \(f_\alpha\), and every **non-atomic** sentence in \(M_0\) is satisfied in all states of the world.
“One more thing”

- The delete list of $push(X, Y)$ includes $nextto(robot, \$)$ but not $nextto(\$, robot)$.

- This is “a trick carefully planned by the authors.”

- $nextto(\$, robot)$ never appears in initial model or add list of any operator.

- We need to slightly modify Definition B.
The delete list of \(\text{push}(X, Y) \) includes \(\text{nextto}(\text{robot}, \$) \) but not \(\text{nextto}(\$, \text{robot}) \).

This is “a trick carefully planned by the authors.”

\(\text{nextto}(\$, \text{robot}) \) never appears in initial model or add list of any operator.

We need to slightly modify Definition B.
“One more thing”

- The delete list of $\text{push}(X, Y)$ includes $\text{nextto}(\text{robot}, \$)$ but not $\text{nextto}(\$, \text{robot})$.

- This is “a trick carefully planned by the authors.”

- $\text{nextto}(\$, \text{robot})$ never appears in initial model or add list of any operator.

- We need to slightly modify Definition B.
“One more thing”

- The delete list of $push(X, Y)$ includes $nextto(robot, \$)$ but not $nextto(\$, robot)$.

- This is “a trick carefully planned by the authors.”

- $nextto(\$, robot)$ never appears in initial model or add list of any operator.

- We need to slightly modify Definition B.
The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from E is called essential.

Definition C

An operator description (P, D, A) is **sound** relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every essential sentence that is satisfied in s and does not belong to D is satisfied in $f(s)$,
- A is satisfied in $f(s)$ and every non-essential sentence in A is satisfied in all states of the world.

Σ is sound if M_0 is satisfied in the initial state s_0, each operator description $(P_\alpha, D_\alpha, A_\alpha)$ is sound relative to f_α, and every non-essential sentence in M_0 is satisfied in all states of the world.
The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from E is called essential.

Definition C

An operator description (P, D, A) is sound relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every essential sentence that is satisfied in s and does not belong to D is satisfied in $f(s)$,
- A is satisfied in $f(s)$ and every non-essential sentence in A is satisfied in all states of the world.

Σ is sound if M_0 is satisfied in the initial state s_0, each operator description $(P_\alpha, D_\alpha, A_\alpha)$ is sound relative to f_α, and every non-essential sentence in M_0 is satisfied in all states of the world.
The general semantics of STRIPS

Suppose we have a special set E of ground atoms. Formulas from E is called *essential*.

Definition C

An operator description (P,D,A) is **sound** relative to an action f if, for every state s such that P is satisfied in s,

- f is applicable in state s,
- every *essential* sentence that is satisfied in s and does not belong to D is satisfied in $f(s)$,
- A is satisfied in $f(s)$ and every *non-essential* sentence in A is satisfied in all states of the world.

Σ is sound if M_0 is satisfied in the initial state s_0, each operator description $(P_\alpha,D_\alpha,A_\alpha)$ is sound relative to f_α, and every *non-essential* sentence in M_0 is satisfied in all states of the world.
In memory of

Steve Jobs
1955-2011