Sachin Shinde

Xiaolai He

Simulation and Timing Analysis in Cadence Using Verilog XL and Build Gates

Aim:
The aim of this tutorial is to demonstrate the procedure for using Cadence for different level of simulation of a digital design starting from the top behavioral simulation going down to the gate level. The list of simulations shown below is ordered from high-level to low-level simulation (high-level being more abstract and low-level being more detailed).

· Behavioral simulation

· Functional simulation

· Static timing analysis

· Gate-level simulation

· Switch-level simulation

· Transistor-level or circuit-level simulation

Starting from high-level to low-level simulation, the simulations become more accurate, but they also become progressively more complex and take longer to run.
Circuit:

[image: image26.png]Slew Propagation | WORST

PVT Made | max

Tree Tupe | worst_case
Process | 1.00
Voltage | 5.00
Tenperature | 25.00
tine unit | 1.00 ns
capacitance unit | 1,00 pf
resistance unit | 1,00 kOhn

ath 1: MET Setup Check with Pin ££7/1_9/5_reg/CLK

ndgoint: ££7/1 9/u_reg/D (") checked with ~leading edge of ’ideal clock;
eginpoint: £3/i79/ureg/Q (°) trigeered by leading edge of ’ideal clock
ther End Arrival Tine 0,00

Setup 0.00
Phase Shift 50,00
Required Tine 50,00
Arrival Tine 37,16
Slack Tine 12,34

pal

| Instance | firc | cell | Delay | Arrival | Reguired
} | | | | Tine | Tine

| | module_clock | | | 000 12.84
| 3 | ek ™ | #.5 | | 000 12.84
| #3719 | clk | process 0.5 | | 000 12.84
| #£3/i9/oreg | CLK " > Q" | ATLFF | s.00] 5.00] 17.34
| #3719 la? | process 0.5 | | 500 1784
| 3 laz | #.5 | | 500 1784
| fa la” | full_adder | | 500 1784
| fa/iT |I0°>00y | ATLINW | 450| 950 2234
| fa/iZooz |10y >00" | ATLNAND | 5.25| 14.75| 2750
| fa/iZ3 | 10°->00y | ATLNAND | 5.62| 20,38 | 33.22
| fa/iZl | I0v ->00" |ATLNAND | 5.88| 26.25| 39.08
| fa | sun ™ | full adder | | 2625] 39.08
| w0 I6” | e T | | 2625 39.08
| me0/1_07 |11~ > 00y | ATLINOR | 5.84| 329 4508
| w2071 020 | I0v > 00" | ATLIINY | 497| 31.16] 50,00
| mx0 | out ™ | w1 | | arae| 50.00
| 7 [d7 | #.1 | | arae| 50.00
| #7719 [d2 | process 0.1 | | arae| 50.00
| #F7/i9/greg | D° | ATL_FF | 0.00| 37.16] 50,00
+

al =
+ Early mode
 Late mode
Rise transistic
1 Falltransitio
1 Summary
~ Max paths

- Worst path:
Nurnber of patt
1 &
5
From pins

Through pins

To pins

 Figure 1 The Digital Circuit used for Simulation

Note: All the verilog modules associated with the design in Figure 1 as well as the test bench used for simulation are given in the appendix.
Behavioral Simulation:
Step 1: Generating the Verilog Code

Copy the code given in the appendix into a text file and save the files as .v files. The code includes four modules and a test bench.

Step 2: Importing the Verilog file to ICFB

Start icfb. To start icfb, open a terminal console set the display to your desktop using the setenv command and enter icfb& as shown in the Figure 2.
[image: image2.png]=] Console

window Edit Options

Sun Microsystems Inc. Sun0s 5.8 Generic February 2000
ees2> who am 1

he pts/? Aug 4 19:03 (ee102.dhcp. ttu.edu:0.0)
ees2> seteny DISPLAY ee102.dhcp. ttu.edu:0.0

ces2> fcfba

[1] 29675

ses2> Warning: Camnot canvert string " ey Escape., Key_Cancal”
nding

Warning: Cannot convert string *<Key>Home, Key Begin to type Ui
Warning: Cannot convert string " <Key>F1,_Key Help” to type Virtu:
Warning: Cannot convert string "Shift<Key>F10, Key Menu" to type
Warning: Cannot convert string *<Key>F10,Shiff_Key_Menu" to type
Warning: Cannot convert string " <Key>kP_Enter, _Key_Exscuts” to t
ng

Warning: Cannot convert string "Alt<Key>Return,Alt_Key_KP_Enter”
Binding

sh: /cadence/local /bin/xmesg: not Found
shi usr/bin/xi1/x1sfonts: not found

106 A
Digital Exanple
NCSU_Techlib_TSMC04_4nZp
NCSU_analog_parts
NeSU_digital

NCSU_tech

Tech File

US_8ths

=hdlLib

analogLib

basic

cdsDefTechLib

functional

nydefault

nydefaults

newl

poells vi

Messages

Loading NCSU Library Manage:

: customizat

[Ei icfb - Log: /export/home2/he/CDS.og

File Tools Options Technology File

Help

Loading layers. oxt.
[Loading NCSU SKILL routines.
[END OF SITE CUSTOMIZATION

Loading /cadence/taols/plot/. cdsplotini

(e i

 Figure 2 Starting icfb

Once you boot up the icfb, in the CIW go File(Import(Verilog to get to the window in Figure 3. Highlight verilog file you want to import in the “file filter name” which in our case is mydesign.v and the name of the target library which in this is “new2”. Hit the add button in the “verilog files to import” which will automatically fill in the path to the verilog file you highlighted. Now click OK to import the file.

[image: image3.png]ox | camer | oorans) somy | oas ave

Help

5|

Pl Fiter iame. | \

nydefaules/
nydefaults
nydesign. v
nevhdl. log

fexport/hone2/he

Browse

Target Library Name [evE

Reference Libraries %
Verilog Files To Import /export/hone? /he/nydesign. vl Ada
~1 Options. [
v options L e

-y Options. E Add
Library Extension i

Library Pre-Compilation Options

Pre Compiled Verilog Library |

HDL View Name hall]

Target Compile Library Name . Browse

compie Verilog Library Only |

Ignore Modules File i Add

 Figure 3 Window for the verilog file to import

Your log window will look like this.
 [image: image4.png]File Help
@(#)§0DS: ihdl version 4.4.6 08/14/2000 17:51 (cds11612) § Ved Aug
Verilogln: +W,26: Library (sample) not initialised in the database
Target library nev not found Greating a new one.

Checked in synbol £F

Checked in Functional view £f. Expression on port found

Checked in synhol full_adder

Checked in Fanctional view full_adder. Unknown Behavioral statement.
Checked in synbol mux

Checked in Fanctional view mux. Unknown Behavioral statenent found
Checked in synbol ny_design

Checked in schematic my_design

Checked in synhol th_nydesign

Checked in Fonctional view th_nydesign. Register Declaration found

End of LogFile.

3

 Figure 4 Log File generated while importing the verilog file

[image: image5.png]Show Categories Show Fles

Library

new?

ANI06
Digital Exanple
NCSU_TechLib_TSHC04_dnZp
NCSU_analog_parts
NCSU_digital

NCSU_tech

Tech File

Us_gths

=hdlLib

analogLib

basic

cdsDefTechLib

functional

nydefault

nydefault?

newl

new?

Messages

cell

EE
full_adder

ny_design
th_nydesign

Loading NCSU Library Manager customizations...done.

View

 Figure 5 Module imported to icfb

Figure 5 shows the module after you import the verilog files.

Step 3 Starting SimVision

Once you have imported the verilog files to icfb you are ready to run the simulation in Verilog XL. For doing this, first of all, close icfb as well as all the other open windows.

Then in the terminal console type in “verilog +gui mydesign.v” as shown in the Figure 6 which would start up SimVision where you can simulate your verilog code
[image: image6.png]ees2> verilog +gul mydesign.v
Tool: VERILOG-KL 05.10.002-p Aug 4, 2004 13:28:53

Copyright (c) 1995-2003 Cadence Design Systems, Inc. All Rights Reserved.
Unpubished — rights reserved under the copyright laws of the United States.

Copyright (c) 1995-2003 UNIX Systems Laboratories, Inc. Reproduced with Permiss
fon.

THIS_SOFTWARE AND ON-LINE DOCUMENTATION CONTAIN CONFIDENTIAL INFORMATION
AND TRADE SECRETS OF CADENCE DESIGN SYSTEMS, INC. USE, DISCLOSURE, OR
REPRODUCTLON IS PROHIELTED WITHOUT THE PRLOR EXPRESS WRLTTEN PERMISSION OF
CADENCE DESTGH SYSTEMS, INC.

RESTRLCTED RLGHTS LEGEHD

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(i1) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1)_and (2) of Comercial Computer Software — Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design Systems, Inc.
555 River 0aks Parkway
San Tose, California 95134

For_technical assistance please contact the Cadence Response Center at
1-877-CDS—4911 or send email to supportecadence. com

For more information on Cadence’s Werilog=KL product line send email to
talkvecadence. con

Compiling source file “mydesign.v"
Highest level modules:
tb mydesian

simvision: 05.10-p004: (<) Copyright 1995-2003 Cadence Design Systems, Inc.
txe: 05.10-p001: () Copyright 1939-2003 Cadence Design Systems, Inc.

 Figure 6 Starting SimVision

Step 4 Setting up the Simulation

The SimVision windows is shown in Figure 7. Double click on “tb_design”, seen on the left side in the window, to display all the input and outputs of the design as shown in Figure 7.

[image: image7.png]2l
Eile

Edit Windows File Edit View Select Explore Simulation Windows
F| 4 58X || - o[s e TaER

consolecuput o B lTmee T -0 o8| & 9 ah
T Smuleton 10| rouse: [@ ANl Avalable Dala v| G Signalsivarables of scope: [smusorh_nydesign =] G

Search Times:

T[S R s Signal/variable [Vaius]
G1F t_mydesign @ - No Value Available

2 desion @b No Value Available

S bypassd No Value Available

S bypasst No Value Available

e ome) |- @ ein No Value Available
A odile_clock No Value Available

A out_cout No Value Available

A outsum No Value Available

st No Value Available

A sl No Value Available

 Figure 7 SimVision Window

Then in the SimVision window go Select (Signal and hit the waveform button which is the button inside the red circle on top right side of the window as shown in Figure 8.

[image: image1.png]my_design:

bypass0

cin

bypass1

8

clk

whypass0

+

wa $I<II adder.v
wsum

mux.v

wh

wein

weout

whypass1

ff.v

wsel

out_sum

out_cout

[image: image24.png]e = 445

J40s

by

oypasst

out_sum

st

ER=R=R=ReR =N =R]]

[image: image8.png]=l

Elle Edi View Select Explore Simulafion Windows

&[5 - o[m W @E

U [y [Timea <] - ~lJns] 8- | (@ by | Search Times: [Value

Send selected bject(s) to
(click and hold for & menu

target waveror
of ather options

Srowse: [@ Al Avalsbis Data =] (3 Signls/Varsbes of scopes [amatoo_nya

o]

— | PPy —

— 1

 Figure 8 Waveform Generation

A new waveform window should appear as which should look like Figure 9.

[image: image9.png]Waveform 1 - simVision

h Times: | Value ~/

Tine = 0(0)
cusar> g [eoos Jaoos jpoos jsoos 1000s [1200s [1400s [1600s

bypass0
oypasst

@ macte_clock

 Figure 9 Waveform generation in SimVision

The next step is to hit the button Simulation (Reinvoke Simulation in the waveform window. Upon doing that you should have some new buttons added to the waveform window as shown in Figure 10.

[image: image25.png]Window Edit Options

Help

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1)_and (2) of Comercial Computer Software — Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design Systems, Inc.
555 River 0aks Parkway
San Tose, California 95134

For_technical assistance please contact the Cadence Response Center at
1-877-CDS—4911 or send email to supportecadence. con

For more information on Cadence’s Werilog=KL product line send email to
talkvecadence. con

Compiling source File "mydesign.v"
Highest Tevel module
tb mydesian

ces2> SST2 Database Write APT — DWAPT Version 05.10-p004 — 03/15/2003
Copyright 1997-2003 Cadence Design Systems, Inc.

nc
ees2> hg_shell —pks —quill

[image: image10.png]Eile Edit View Explore Forat Simulation Windows

o o] ¥ By X

earch Names: | Signal ~ | @8, @ Search Times: Value ~.

$ + " QEOBE

= [Timea =] -[o s <l @ | DEER S S | sinulation Tine: 0 Time Range: 3 - 20005 =

Baseling = 0 T

 Figure 10 New Buttons added to the Waveform window

Now to simulate the circuit hit the “play” button which is circled in Figure 10. You should get the behavioral simulation result of the circuit as shown in Figure 11.

[image: image11]
 Figure 11 Behavioral Simulation of the Digital Circuit

This concludes the behavioral simulation of the circuit.

Function Simulation

Functional simulation like behavioral simulation also ignores timing but it includes delay of the blocks included in the design, which can be set to fixed value through the verilog code. We add a delay of 10 unit in the flip-flop as shown in Figure 12.
 [image: image12.png][FTipFlop verilog Code with belay

module £F Ik, rst, d, o)
input clk, st d;

output g;

reg o

always @Cposedge c1k)
begin

iferst)

 Figure 12 Adding delay in the Flip-Flop circuit

Save the verilog file after adding the delay to it. Now simulate the code again the by following the Step 3 & 4 of the behavioral simulation. Your output should look like Figure 13.

[image: image13.png]Design fails

Tina Range: 1 : 80

Baseline
Cursor-Baseline = 505

by
bymasst

Loou

&
&
&
=)
@
L=]
=
@

atam

& nt

 Figure 13 Simulation with Delay added

As seen in Figure 13 the simulation fails if the delay is 10 time units because the delay is larger than the clock period which is 8 time units.
Static Time Analysis
Static timing analysis is the analysis of logic in a static manner, computing the delay times for each path. It does not require the creation of a set of test (or stimulus) vectors (an enormous job for a large circuits). Timing analysis works best with synchronous systems whose maximum operating frequency is determined by the longest path delay between successive flip-flops. The path with the longest delay is the critical path.

We use build gates for the synthesis of our design. Before loading the verilog file in the build gates be sure to delete the test bench module from the design as it cannot be synthesized. We save the new verilog file without the test bench as mydesign1.v. Also to make things a little simpler we created a new folder “synthesis” and placed the verilog file in that directory. From now on we make “synthesis” our working directory. The various steps involved in the synthesis and timing analysis are listed below.

Step 1: Starting Build Gates

To start Build Gates type “bg_shell –pks –gui” in the terminal console as shown in the Figure 14.

[image: image14]
 Figure 14 Starting Build Gates

The GUI for build gates is shown in Figure 15.

[image: image15.png]orts

dow

T
Modules | Clusters | Variables | HDL | Tel | Constraints | Schematic | PKS | Distributed |

o modules [Verog ~|D[@[Ee[m[@| (8 | |

Update mode: | automatic — [Rebuia [|| [T =

=l

Loading GUT preferences */export /none2/he/ anb it fogpks5 gui” ,
pks_shell[1]>

 Figure 15 Build Gates GUI
Step 2 Loading Verilog Files and Generating the Schematic

Now you can load the verilog file in build gates. To do this go File(Open. Choose verilog in the options appearing on the right side of the window which will display all the verilog files in the directory as shown in Figure 16.
[image: image16.png]— adence Fhysically Rowledgeable »YNnes|s

Eile Edit View Commands Reports Window

T
Modules | Clusters | Variables | HDL | Tel | Constraints | Schematic | PKS | Distributed |
o modules e nEEEEE 3
[fexportfhomezihe/Synthesis ~ ADB database Ok
~ Ambit library el
Bl mydesignt.v. A Verilog ===
~ VHDL
« EDIF
~ Tiring library
» ~ Physical floorplan
HI I-| | Tel source script
exporthomezihe/Synthesisimydesignt v X | |~ Toggle count
o il
L]
7 v ~upp "vh "h

 Figure 16 Loading the Verilog Files

On loading the file you will see a screen like shown in Figure 17.

[image: image17.png]Llie Ldt View Lommands hepors Yindow HOelp
T
Modules || Clusters | Variables | HDL | Tl | Constraints | Schematic | PKS | Distributed |
o modules ErEnEFEEEN i [
7
Update mode: | automatic — [Rebuia [|| [T =
Loading GUI preferences ’/export/hone2/he/ .anbit/begpksS.qui’. .. [
Info: Reading verilog file: /export/home2/he/Sunthesis/nydesignl.y <NAVIGATES-104>,
pks_shell[2]>

 Figure 17 Verilog File Loaded
After loading the verilog file you can synthesize it by using Command (Build Generic. Upon doing this you should have a schematic as shown in the Figure 18.
[image: image18.png]= i
File Edit View Commands eporis Window Help
T
Modules | Clusters | Variables HDL | Tl | Constraints [Schematic | PKS | Distributed
Normal o o e s R [| AR S | | 2 [T e
Module: rmy_design my_design 1 + " T

8 mx1 [mux] (g)

Update mode: | automatic Rebuild

Finished processing noduls: full_adder’ <HODGEN-110>,
Finished processing noduls: £ CHODGEN-110> ,
Finished processing noduls: “nux’ <HODGEN-1105 ,
Info: Setting ’my_cdesign’ as the top of the design hisrarchy CFNP-T04>.
Info: _ Setting ’my_design’ as the default top tining module <FHP-T05) .
pks_shell[3]>

 Figure 18 Schematic Generated by Build Gates

Step 3 Generating Timing Report

For generating the timing report we use .tcl files. A file timing.tcl is used to set timing constraints on the design. Another file report.tcl generates the timing and area report as well as the netlist for the schematic. Both the files are given in the appendix. You should save both these files in your working directory with your verilog code.

To source the timing.tcl file type “source timing.tcl” in the command window at the bottom in the Build Gates GUI. Then run it using the command “timing”. After running the timing.tcl file source the report.tcl file and run it the same way. Your window should look like Figure 19.

 [image: image19.png]8 mx1 [mux] (g)

Update mode: | automatic Rebuild

Tnfo: Setting ny_design’ as the top of the design hisrarchy CFNP-704
Info: _ Setting ’my design’ as the default top tining module <FHP-T05) .
pks_shell[3]>source tining tcl
pks_shell[4]>tining
pks_shell[5]>source report tcl
pks_shell[]>report.
pks_shell[T]>

 Figure 19 Sourcing and Running tcl Files.

Once you run the report.tcl file, you should have two new folders (“netlist” & “report”) created automatically in your working directory. The report directory contains the timing, area and hierarchy report. Your timing report should look similar to Figure 20.

As seen from the Figure 20 the design fails the timing test. You can improve the timing performance of your circuit either by relaxing the timing constraints (in case of this design simply increasing the period of the clock) stated in your timing.tcl or by optimizing the circuit using build gate to reduce the delay.

[image: image20.png]| Release | vs.0-poog

Version	i 02 11248039
Hodule	my_desian
Timing	LATE
Slew Propagation	WORST
BT Mode	max
Tree Type	worst_case
Process	1.00
Voltage	5.00
Temperature	25.00
time unit	0:00 ns
capacitance unit	0.00 pF
resistance unit	0.00 kohm

Path 1: VIOLATED Setup Check with Pin Ff8/i_9/q_reg/CLK
Endpoint: 78/i_9/q_req/ (») checked with leading edge of ’ideal_clock’
Beginpoine: FF4/19/0 reg/Q (») trisgersd by Teading sdge of ‘idsal clock’
other End Arrival Time 0.0

= Setup]
+ Phase shift 30.00
= Required Time 30,00

Arrival Time 43125
= Slack Time -13.25
| Instance | arc I cell | Delay | Arrival | Required |
I | | | | Tine | e |
	module_clock 4			oo -13.25	
Fr4	clka			oloo	13125
Frasis	clk	process o		oo	315
FF4/i8/a_reg	CLK A — Q&	ATLMACRO_FF	.00	8.00	2
Frasiss lg#	process 0	I 80	2		
Fr4 lg»	FF	I 80	2		
fa Iba	full_sdder		8o	2	
fasis 1 I04 004	ATLOR	7.00 15000	75		
fariss 1 I0 4> 004	ATCCAND	eis0 2150	125		
farisa 1T04—> 004	&TLOR	650 2800	75		
fa	cout	Full adder		2800	75
met b4	mux		200	75	
met /12	T0a 00	ATLMN 21	7.25] 3525 100		
mel	out	mux		3525	100
ff8 lds	FF		3525	100	
Ff8/is ld»	processo		3525	100	
Ff8/i8/i2	Toa oo	ATLMI 21	800 4325	100	
Ff8/i 9/ reg	D &	ATLCMACROFF	0.00	43.25	s0o

 Figure 20 Timing Report
Step 4 Optimizing the Design to Improve the Timing Performance

To optimize the circuit you need to first set the target technology. You can do this by going command(set target technology. You will get a window as shown in Figure 21.

[image: image21.png]ules || Clusters | Variables

ate mode: | automatic

el1[13]>
el1[13]>

it View Commands Reports

Window

T
HDL | Tel | Constraints | Schematic | PKS | Distributed

e S =T s R RS T

Normal

Module: my_design my_design 1

I~ Setrechnciogy |
Re| - Technology ok
“ ambit_xatl

‘ atl Cancel

 Figure 21 Setting Target Technology
In this case we choose ambit​_xatl.

After choosing the technology file you optimize the circuit by going command(optimize. Our selection for the various parameters is shown in Figure 22.

[image: image22.png]Edit View Commands Reports Window

dules | Clusters | Variables |

HDL | Tel | Constraints | Schematic || PKS | Distr

ign [my_design] (1

Jul
[(m)
1 (m) Effort Level
a [f] (m) ~ Low
5[] (m) 4 Medium
2 fis [f] (m) High
7 [f] (m) -
=ff8 [f] (m) Flatten Mode;
8 mxd [mux] (g) e
Bmx1 [mux (g) ||
s Alto
fate mode: | automati{ | O
Priority——
shell[13
;hzll%iﬁ%; s Area
4 Time

[Normal %523 X[o e [21T [

Module: [my_design my_design 1

timi

Options
1 No partition

1 No design rule
1 No area reclaim
I Minimize area
21 Time budget

1 Incremental

_i Force

i Checkpoint

i Pks

Scan file
scan

 Figure 22 Setting Optimization Parameters

After optimizing the circuit generate the report again by running the timing.tcl file and report.tcl file. The report should show a reduction in the delay of the critical path. Our timing report is shown in Figure 23. As can be seen in the report we increased the clock period to 50 and also due to optimization there is some improvement in the delay over the delay obtained in the unoptimized circuit. You can improve optimization by trying different target technologies and trying different setting for optimization.

[image: image23]
 Figure 23 Timing Report for optimized circuit.

Logical or Gate Level Simulation

Logic simulation or gate-level simulation is used to check the timing performance of an ASIC. Logic gate or logic cell (NAND, NOR, and so on) is treated as a black box modeled by a function whose variables are the input signals. Setting all the delays to unit value is the equivalent of functional simulation.

For logic simulation save the generated netlist for the synthesized circuit as a verilog file. If the synthesis is done correctly the circuit should be at the gate level. Then simulate the verilog code by following the steps listed in the behavioral simulation at the beginning of this tutorial. If you do not have correct libraries or they are not linked correctly you will get an error that some modules could not be found.

Appendix

Mydesign.v

// Stimulus formy_design

module tb_mydesign; // Test Bench Module

reg bypass0, bypass1, module_clock, rst, a, b, cin, sel;

wire out_sum,out_cout;

my_design (bypass0, bypass1, module_clock, rst, a, b, cin, sel, out_sum,

out_cout); // Calls my_design module

 initial begin

 module_clock=0; // initial settings

 rst=0;

 a=0;

 b=0;

 cin=0;

 sel=1;

 bypass0=0;

 bypass1=0;

 #8 a=1; // test pattern

 #8 b=1;

 #8 cin=1;

 #8 a=0;

 #8 rst=1;

 #8 bypass0=1;

 #8 bypass1=1;

 #8 sel=0;

 #10 $finish;

 end

 always begin // clock setup

#4 module_clock=!module_clock;

 end

endmodule

// Module my_design

module my_design (bypass0, bypass1, module_clock, rst, a, b, cin, sel, out_sum,

out_cout);

input bypass0, bypass1, module_clock, rst, a, b, cin, sel;

output out_sum, out_cout;

wire wbypass0, wbypass1, wa, wb, wcin, wsel, wout_sum, wout_cout;

ff ff1 (.clk(module_clock), .rst(rst), .d(bypass0), .q(wbypass0));

ff ff2 (.clk(module_clock), .rst(rst), .d(bypass1), .q(wbypass1));

ff ff3 (.clk(module_clock), .rst(rst), .d(a), .q(wa));

ff ff4 (.clk(module_clock), .rst(rst), .d(b), .q(wb));

ff ff5 (.clk(module_clock), .rst(rst), .d(cin), .q(wcin));

ff ff6 (.clk(module_clock), .rst(rst), .d(sel), .q(wsel));

ff ff7 (.clk(module_clock), .rst(rst), .d(wout_sum), .q(out_sum));

ff ff8 (.clk(module_clock), .rst(rst), .d(wout_cout), .q(out_cout));

full_adder fa (.a(wa), .b(wb), .cin(wcin), .sum(wsum), .cout(wcout));

mux mx0 (.a(wbypass0), .b(wsum), .sel(wsel), .out(wout_sum));

mux mx1 (.a(wbypass1), .b(wcout), .sel(wsel), .out(wout_cout));

endmodule

//Module mux.v

module mux (a, b, sel, out);

input a, b, sel;

output out;

wire out = sel ? a : b;

endmodule

//Module Full_adder

module full_adder (a, b, cin, sum, cout);

input a, b, cin;

output sum, cout;

wire cout = (a & b) | (cin & (a | b));

wire sum = a ^ b ^ cin;

endmodule

//Module Flip Flop

module ff (clk, rst, d, q);

input clk, rst, d;

output q;

reg q;

always @(posedge clk)

begin

if(rst)

q = 0;

else

q = d;

end

endmodule

Timing.tcl
proc timing { } {

Defining an ideal clock

-waveform {leading_edge trailing_edge}

-period: the value of the period

"ideal_clock" is the name of the clock

-clock: specifies the name of the ideal clock

-pos: the positive edge of the ideal clock

-neg: the negative edge of the ideal clock

set_clock ideal_clock -waveform {0 4} -period 10

set_clock_root -clock ideal_clock -pos module_clock

Source all_inputs

proc all_inputs {} {find -port -input -noclocks "*"}

Source all_outputs

proc all_outputs {} {find -port -output "*"}

Defining the set-up and hold times for all input(s) with respect to ideal_clock

-early refers to a set-up time value for your input(s)

-late refers to a hold-time value for your input(s)

set_input_delay -clock ideal_clock -early 0.1 [all_inputs]

set_input_delay -clock ideal_clock -late 0.2 [all_inputs]

Defining the set-up time for the next module's input ports

set_external_delay 0.0 -clock ideal_clock [all_outputs]

Defining the drive (output) resistance of your input(s)

set_drive_resistance 0 [all_inputs]

}// Stimulus formy_design

module tb_mydesign; // Test Bench Module

reg bypass0, bypass1, module_clock, rst, a, b, cin, sel;

wire out_sum,out_cout;

my_design (bypass0, bypass1, module_clock, rst, a, b, cin, sel, out_sum,

Report.tcl

proc report {} {

mkdir report

mkdir netlist

report_timing > report/timing.rpt

report_area -hier -cell > report/area.rpt

report_hierarchy > report/hierarchy.rpt

write_verilog -hier netlist/my_design.net

}
References

1) Bindal, Ahmed, “Synthesis and Timing Verification Tutorial”, Computer Engineering Department, San Jose State University

http://vlsicad.ucsd.edu/courses/ece260b-w04/Lab1/BGTutorial.pdf
2) http://www-ee.eng.hawaii.edu/~msmith/ASICs/HTML/Book/CH13/CH13.htm
