Spatial Analysis and Modeling
(GIST 4302/5302)

Guofeng Cao
Department of Geosciences
Texas Tech University
Outline of This Week

• Last week, we learned:
 – Spatial autocorrelation of areal data
 • Moran’s I, Getis-Ord General G
 • Anselin’s LISA

• This week, we will learn:
 – Regression
 – Spatial regression
From Correlation to Regression

Correlation

• Co-variation
• Relationship or association
• No direction or causation is implied

Regression

• Prediction of Y from X
• Implies, but does not prove, causation
• X (independent variable)
• Y (dependent variable)
Regression

• Simple regression
 – Between two variables
 • One dependent variable (Y)
 • One independent variable (X)
 \[Y = aX + b + \varepsilon \]

• Multiple Regression
 – Between three or more variables
 • One dependent variable (Y)
 • Two or independent variable (X₁, X₂, ...)

\[Y = bₙXₙ + b₂X₂ + L + b₀ + \varepsilon \]
Simple Linear Regression

• Concerned with “predicting” one variable (Y - the dependent variable) from another variable (X - the independent variable)

\[Y = aX + b + \varepsilon \]

\(Y_i \sim \) observations

\(\hat{Y}_i \sim \) predictions

\(\varepsilon_i = Y_i - \hat{Y}_i \)
How to Find the line of the Best Fit

- **Ordinary Least Square (OLS)** is the mostly common used procedure.
- This procedure evaluates the difference (or error) between each observed value and the corresponding value on the line of best fit.
- This procedure finds a line that minimizes the sum of the squared errors.
Evaluating the Goodness of Fit: Coefficient of Determination (r^2)

- The coefficient of determination (r^2) measures the proportion of the variance in Y (the dependent variable) which can be predicted or "explained by" X (the independent variable). Varies from 1 to 0.

- It equals the correlation coefficient (r) squared.

\[
r^2 = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2}
\]

Note:

\[
\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2
\]
Partitioning the Variance on Y

$$
\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2
$$

- SS Total or Total Sum of Squares
- SS Regression or Explained Sum of Squares
- SS Residual or Error Sum of Squares

$$r^2 = \frac{\sum (\hat{Y}_i - \bar{Y}_i)^2}{\sum (Y_i - \bar{Y}_i)^2}$$
Standard Error of the Estimate

- Measures *predictive accuracy*: the bigger the standard error, the greater the spread of the observations about the regression line, thus the predictions are less accurate.

\[\sigma = \text{error mean square, or average squared residual} = \text{variance of the estimate, variance about regression} \]

\[\sigma = \sqrt{\frac{\sum (Y_i - \hat{Y}_i)^2}{n-k}} \]

- Number of observations minus *degrees of freedom* (for simple regression, degrees of freedom = 2)
Sample Statistics, Population Parameters and Statistical Significance tests

\[Y = aX + b + \varepsilon \quad Y = \alpha + \beta X + \varepsilon \]

- \(a\) and \(b\) are sample statistics which are estimates of population parameters \(\alpha\) and \(\beta\).
- \(\beta\) (and \(b\)) measure the change in \(Y\) for a one unit change in \(X\). If \(\beta = 0\) then \(X\) has no effect on \(Y\).

- Significant test
 - Test whether \(X\) has a statistically significant affect on \(Y\).
 - Null Hypothesis \((H_0)\): in the population \(\beta = 0\)
 - Alternative Hypothesis \((H_1)\): in the population \(\beta \neq 0\)
Test Statistics in Simple Regression

- **Student’s t test**, similar to normal, but with heavier tails

\[
t = \frac{b}{\text{SE}(b)} = \frac{b}{\sigma_e^2 \sqrt{\sum_i (X - \bar{X})^2}}
\]

where \(\sigma_e^2 \) is the variance of the estimate, with degrees of freedom = \(n - 2 \)

- **F-test**, A test can also be conducted on the coefficient of determination (\(r^2 \)) to test if it is significantly greater than zero, using the \(F \) frequency distribution.

\[
F = \frac{\text{Regression S.S.}/\text{d.f.}}{\text{Residual S.S.}/\text{d.f.}} = \frac{\sum (\hat{Y}_i - \bar{Y})^2 / 1}{\sum (Y_i - \hat{Y}_i)^2 / n - 2}
\]

- Mathematically identical to each other
Multiple regression

• Multiple regression: Y is predicted from 2 or more independent variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_m + \epsilon$$

• β_0 is the intercept — the value of Y when values of all $X_j = 0$
• $\beta_1 \ldots \beta_m$ are partial regression coefficients which give the change in Y for a one unit change in X_j, all other X variables held constant
• m is the number of independent variables
How to Decide the Best Multiple Regression Hyperplane?

- Least square - Same as in the simple regression case

\[
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_m + \varepsilon
\]

or \[
Y_i = \sum_{j=0}^{m} X_{ij} \beta_j + \varepsilon_i \quad \text{(actual } Y_i).\]

\[
\hat{Y}_i = \sum_{j=0}^{m} X_{ij} \beta_j \quad \text{predicted values for } Y \quad \text{(regression hyperplane)}
\]

\[
e_i = Y_i - \sum_{j=0}^{m} X_{ij} \beta_j = (Y_i - \hat{Y}_i) = (\text{Actual } Y_i \text{ - Predicted } \hat{Y}_i)
\]

\[
\text{Min } \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2
\]
Evaluating the Goodness of Fit: Coefficient of Multiple Determination \((R^2) \)

- Similar to simple regression, the coefficient of multiple determination \((R^2) \) measures the proportion of the variance in \(Y \) (the dependent variable) which can be predicted or “explained by” all of \(X \) variables in combination.

Varies from 0 to 1.

\[
R^2 = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2}
\]

\(R^2 \) = SS Regression or Explained Sum of Squares

\(\sum (Y_i - \bar{Y})^2 \) = SS Total or Total Sum of Squares

Formulae identical to simple regression

As with simple regression

\[
\sum (Y_i - \bar{Y})^2 = \sum (\hat{Y}_i - \bar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2
\]

\(\uparrow \) SS Total or Total Sum of Squares

\(\uparrow \) SS Regression or Explained Sum of Squares

\(\uparrow \) SS Residual or Error Sum of Squares
Reduced or Adjusted $\overline{R^2}$

- R^2 will **always** increase each time another independent variable is included
 - an additional dimension is available for fitting the regression hyperplane (the multiple regression equivalent of the regression line)

- Adjusted $\overline{R^2}$ is normally used instead of R^2 in multiple regression

\[
\overline{R^2} = 1 - (1 - R^2) \left(\frac{n-1}{n-k} \right)
\]

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept.
Interpreting *partial regression coefficients*

- The regression coefficients \((b_j)\) tell us the change in \(Y\) for a 1 unit change in \(X_j\), all other \(X\) variables “held constant”

- Can we compare these \(b_j\) values to tell us the relative importance of the independent variables in affecting the dependent variable?
 - If \(b_1 = 2\) and \(b_2 = 4\), is the affect of \(X_2\) twice as big as the affect of \(X_1\)?
 - NO!

- The size of \(b_j\) depends on the measurement scale used for each independent variable
 - if \(X_1\) is income, then a 1 unit change is $1
 - but if \(X_2\) is rmb or Euro(€) or even cents (₵)
 - 1 unit is not the same!
 - And if \(X_2\) is % *population urban*, 1 unit is very different

- Regression coefficients are only directly comparable if the units are all the same: all $ for example
Standardized partial regression coefficients

- How do we compare the relative importance of independent variables?
- We know we cannot use partial regression coefficients to directly compare independent variables unless they are all measured on the same scale.
- However, we can use *standardized partial regression coefficients* (also called *beta weights*, *beta coefficients*, or *path coefficients*).
- They tell us the number of standard deviation (SD) unit changes in Y for a one SD change in X.
- They are the partial regression coefficients if we had measured every variable in *standardized form*.

\[
\beta_{YX_j}^{std} = b_j \left(\frac{S_{X_j}}{S_Y} \right)
\]
Test Statistics in Multiple Regression:

- Similar as in the simple regression case, but for each independent variable
- The student’s test can be conducted for each partial regression coefficient b_j to test if the associated independent variable influences the dependent variable.

- Null Hypothesis $H_0 : b_j = 0$

$$ t = \frac{b_j}{\text{SE}(b_j)} $$

with degrees of freedom $= n - k$, where k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept ($m+1$).

The formula for calculating the standard error (SE) of b_j is more complex than for simple regression, so it is not shown here.
Test Statistics in Multiple Regression

testing the overall model

- We test the *coefficient of multiple determination* (R^2) to see if it is significantly greater than zero, using the F frequency distribution.
- It is an **overall** test to see if at least one independent variable, or two or more in combination, affect the dependent variable.
- Does **not** test if each and every independent variable has an effect

\[
F = \frac{\text{Regression S.S./d.f.}}{\text{Residual S.S./d.f.}} = \frac{\sum (\hat{Y}_i - \bar{Y})^2 / k - 1}{\sum (Y_i - \hat{Y}_i)^2 / n - k}
\]

Again, k is the number of coefficients in the regression equation, normally equal to the number of variables (m) plus 1.

- Similar to the F test in simple regression.
 - But unlike simple regression, it is **not** identical to the t tests.
- It is possible (but unusual) for the F test to be significant but all t tests **not significant**.
Model/Variable Selection

• Model selection is usually an iterative process
• R^2 nor Adjusted \bar{R}^2
• P-value of coefficient
• Maximum likelihood
• *Akaike Information Criteria* (AIC)
 – the smaller the AIC value the better the model

\[AIC = 2k + n \ln \left(\text{Residual Sum of Squares} \right) \]

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept term.
Regression in GeoDa

![Regression interface in GeoDa](image)

- **Variables**: TOWN, TRACT, LON, LAT, MEDV, POLYID
- **Dependent Variable**: CMEDV
- **Covariates**: CRIM, INDUS, CHAS, NOX, RM, AGE, DIS, RAD, TAX, PTRATIO, B, LSTAT, ZN

- **Models**:
 - Classic
 - Spatial Lag
 - Spatial Error

- **Output Options**:
 - Predicted Value and Residual
 - Coefficient Variance Matrix

- **Buttons**:
 - Run
 - Save to Table
 - Save to File
 - Reset
 - Close
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : boston
Dependent Variable : CMDEV Number of Observations: 506
Mean dependent var : 22.5289 Number of Variables : 14
S.D. dependent var : 9.1731 Degrees of Freedom : 492

R-squared : 0.744464 f-statistic : 110.259
Adjusted R-squared : 0.737124 Prob(F-statistic) : 0
Sum squared residual: 10880.2 Log likelihood : -1494.23
Sigma-square : 22.1141 Akaike info criterion : 3016.45
S.E. of regression : 4.70257 Schwarz criterion : 3075.63
Sigma-square ML : 21.5023
S.E of regression ML : 4.63706

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>36.38279</td>
<td>5.057427</td>
<td>7.193933</td>
<td>0.00000000</td>
</tr>
<tr>
<td>CRIM</td>
<td>-0.1062316</td>
<td>0.03256946</td>
<td>-3.261692</td>
<td>0.0011844</td>
</tr>
<tr>
<td>INDUS</td>
<td>0.02330444</td>
<td>0.0609425</td>
<td>0.3824005</td>
<td>0.7023286</td>
</tr>
<tr>
<td>CHAS</td>
<td>2.691086</td>
<td>0.8538237</td>
<td>3.151805</td>
<td>0.0017216</td>
</tr>
<tr>
<td>NOX</td>
<td>-17.74832</td>
<td>3.785282</td>
<td>-4.688769</td>
<td>0.000036</td>
</tr>
<tr>
<td>RM</td>
<td>3.788596</td>
<td>0.4141828</td>
<td>9.147195</td>
<td>0.000000</td>
</tr>
<tr>
<td>AGE</td>
<td>0.00059854</td>
<td>0.01309137</td>
<td>0.04572021</td>
<td>0.9636235</td>
</tr>
<tr>
<td>DIS</td>
<td>-1.501691</td>
<td>0.1976006</td>
<td>-7.599627</td>
<td>0.000000</td>
</tr>
<tr>
<td>RAD</td>
<td>0.3038247</td>
<td>0.06574986</td>
<td>4.620918</td>
<td>0.000049</td>
</tr>
<tr>
<td>TAX</td>
<td>-0.01270635</td>
<td>0.00372651</td>
<td>-3.409715</td>
<td>0.0007083</td>
</tr>
<tr>
<td>PTRATIO</td>
<td>-0.9242695</td>
<td>0.129599</td>
<td>-7.131766</td>
<td>0.000000</td>
</tr>
<tr>
<td>B</td>
<td>0.009230156</td>
<td>0.00265177</td>
<td>3.467674</td>
<td>0.0005710</td>
</tr>
<tr>
<td>LSTAT</td>
<td>-0.53059</td>
<td>0.0502573</td>
<td>-10.55747</td>
<td>0.000000</td>
</tr>
<tr>
<td>ZN</td>
<td>0.04778387</td>
<td>0.01360136</td>
<td>-3.513167</td>
<td>0.0004836</td>
</tr>
</tbody>
</table>

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 87.315931
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 842.5171 0.0000000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 13 181.575 0.0000000
Koenker-Bassett test 13 48.55038 0.0000053

SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 104 N/A N/A

END OF REPORT
Procedures for Regression

• Diagnostic
 – Outlier
 – Constant variance
 – Normality

• Transformation
 – Transforming the response
 – Transforming the predictors

• Scale Change, principal component and collinearity, and auto/cross-correlation

• Variable selection
 – Step-wise procedures

• Model fit and analysis
Always look at your data

Statistics might lie

Source: Brigs UT Dallas
Spurious relationships

Ice Cream sales related to Drownings

- Omitted variable problem
 --both are related to a third variable not included in the analysis

Source: Briggs UT Dallas
Linear Regression does not prove causal effects!

- States with higher incomes can afford to spend more on education, so illiteracy is lower
 - Higher Income -> Less Illiteracy

- The higher the level of literacy (and thus the lower the level of illiteracy), the more high income jobs.
 - Less Illiteracy -> Higher Income

- Regression will not decide!

Source: Briggs UT Dallas
Spatial Regression
Spatial Autocorrelation: shows the association or relationship between the same variable in “nearby” areas.

Standard Correlation shows the association or relationship between two different variables.
Consequences of Ignoring Spatial Autocorrelation

• correlation coefficients and coefficients of determination appear **bigger** than they really are
 • You think the relationship is stronger than it really is
 • the variables in nearby areas affect each other
• Standard errors appear **smaller** than they really are
 • *exaggerated precision*
 • You think your predictions are better than they really are
 since standard errors measure *predictive accuracy*
• More likely to conclude relationship is *statistically significant*.
Diagnostic of Spatial Dependence

• **For correlation**
 – calculate Moran’s I for each variable and test its statistical significance
 – If Moran’s I is significant, you may have a problem!

• **For regression**
 – calculate the residuals
 map the residuals: do you see any spatial patterns?
 – Calculate Moran’s I for the residuals: is it statistically significant?
When (spatial) correlation happens

• Try to think of **omitted variables** and include them in a multiple regression.
 – Missing (omitted) variables may cause spatial autocorrelation

• Regression assumes **all** relevant variables influencing the dependent variable are included
 – If relevant variables are missing, model is *misspecified*
Spatial Regression Methods

• Spatial Econometrics Approaches
 – Lag model
 – Error model

• Spatial Statistics Approaches
 – Simultaneous Autoregressive Models (SAR)
 • A more general case of Spatial Econometrics
 – Conditional Autoregressive Models (CAR)

• Other methods:
 – Generalized linear model with mixed effects
 – Generalized additive model
 – Generalized Estimating Equations

Source: Briggs UT Dallas
Spatial Econometrics Approaches

- **Spatial lag model**
 \[Y = \beta_0 + \lambda WY + X\beta + \varepsilon \]
 values of the dependent variable in neighboring locations \((WY)\) are included as an extra explanatory variable
 - these are the “spatial lag” of \(Y\)

- **Spatial error model**
 \[Y = \beta_0 + X\beta + \rho W\varepsilon + \xi \]
 \(\xi\) is “white noise”
 values of the residuals in neighboring locations \((W\varepsilon)\) are included as an extra term in the equation;
 - these are “spatial error”
Spatial Lag and Spatial Error Models: conceptual comparison

Ordinary Least Squares

OLS

- \(X_j \)
- \(X_i \)
- \(y_j \)
- \(y_i \)
- \(\varepsilon_j \)
- \(\varepsilon_i \)

No influence from neighbors

SPATIAL LAG

- \(X_i \)
- \(X_i \)
- \(y_j \) (dependent variable)
- \(y_i \)
- \(\varepsilon_j \)
- \(\varepsilon_i \)

Dependent variable influenced by neighbors

SPATIAL ERROR

- \(X_j \)
- \(X_i \)
- \(y_j \)
- \(y_i \)
- \(\varepsilon_j \)
- \(\varepsilon_i \)

Residuals influenced by neighbors

Source: Briggs UT Dallas
Spatial Lag Model

- Incorporates spatial effects by including a spatially lagged dependent variable as an additional predictor
- Outcome is dependent on the outcome for neighbors
- The ‘spatially lagged’ or ‘average neighbouring’ W_y is correlated with the unobserved error term, thus the model leads to biased and inefficient coefficients if using OLS
Spatial Error Model

- Incorporates spatial effects through error term
- Unobserved factors in neighboring locations are correlated
- With spatial error violate the assumption that error terms are uncorrelated and coefficients are inefficient if using OLS
Lag or Error Model: *Which to use?*

- **Lag** model primarily controls spatial autocorrelation in the dependent variable.
- **Error** model controls spatial autocorrelation in the residuals, thus it controls autocorrelation in both the dependent and the independent variables.

Conclusion: the error model is more robust and generally the better choice.

Statistical tests called the *LM Robust* test can also be used to select
 - Will not discuss these
Regression Report

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set: bostonpolygon
Dependent Variable: CMEDV Number of Observations: 506
Mean dependent var: 22.5289 Number of Variables: 2
S.D. dependent var: 9.1731 Degrees of Freedom: 504

R-squared: 0.184299 F-statistic: 113.873
Adjusted R-squared: 0.182680 Prob(F-statistic): 4.16755e-024
Sum squared residual: 34730.7 Log likelihood: -1787.88
Sigma-square: 68.9102 Akaike info criterion: 3579.76
S.E. of regression: 8.30121 Schwarz criterion: 3588.21
Sigma-square ML: 68.6378
S.E of regression ML: 8.28479

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>41.39839</td>
<td>1.806375</td>
<td>22.91793</td>
<td>0.00000000</td>
</tr>
<tr>
<td>NOX</td>
<td>-34.01786</td>
<td>3.187837</td>
<td>-10.67114</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER: 9.686514
TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 443.2973 0.0000000

DIAGNOSTICS FOR HETROSKEDEASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 1 1.131862 0.287385
Koenker-Bassett test 1 0.4377741 0.5081988

SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 2 6.069546 0.0480856

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX: boston2.5.gvt
(row-standardized weights)
TEST MI/DF VALUE PROB
Moran's I (error) 0.195775 15.2444755 0.0000000
Lagrange Multiplier (lag) 1 127.4022649 0.0000000
Robust LM (lag) 1 1.7548967 0.1852623
Lagrange Multiplier (error) 1 207.8469315 0.0000000
Robust LM (error) 1 82.1995633 0.0000000
Lagrange Multiplier (SARMA) 2 209.6018282 0.0000000
Model Fitting

- Maximum likelihood estimation
 \[\varepsilon = Y - (\beta_0 + \lambda WY + X\beta) \]

- \(\varepsilon \) are assumed to be normally distributed
- Likelihood distribution of \(\varepsilon \) can be derived
- \(I-\lambda W \) must be invertible matrix (non-singular)
Model/Variable Selection

• Which model best predicts the dependent variable?
• Neither R^2 nor Adjusted \bar{R}^2 can be used to compare different spatial regression models
• We use *Akaike Information Criteria* (AIC)
 – the smaller the AIC value the better the model

$$AIC = 2k + n \left[\ln \left(\text{Residual Sum of Squares} \right) \right]$$

k is the number of coefficients in the regression equation, normally equal to the number of independent variables plus 1 for the intercept term.

Note: can only be used to compare models with the same dependent variable

• Occam's Razor
• End of this topic