
Running R Jobs on HPCC Resources

Introduction
R is a language and software environment for statistical computing and graphics. R provides a
wide variety of statistical (linear and nonlinear modeling, classical statistical tests, time-series
analysis, classification, clustering, etc...) and graphical techniques and is highly extensible. R is a
software package especially suited for data analysis and graphical representation. Functions and
results of the analysis are all stored as objects, allowing easy function modification and model
building.

Table of Contents
1. Setting up the environment

2. How to install R in Conda

3. How to write a parallel multi-core R script

 3.1. Parallel packages
 3.2. How to use R parallel packages

4. Submitting R jobs to the Nocona Partition
 4.1. Serial R jobs
 4.2. Parallel R jobs

5. Submitting R jobs to the Quanah Partition
5.1. Serial R jobs
5.2. Parallel R jobs

 6. Checking If a Job is Running in Parallel using ssh

1. Setting up the environment
Modules are used to set up a user's environment. Typically, users initialize their environment
when they log in by setting environment information for every application they will reference
during the session. The HPCC uses the Environment Modules package as a tool to simplify shell
initialization and allow users to easily modify their environment during the session with module
files.

For more information about how to load and maintain your software environment using modules,
please refer to the user guide "Software Environment Setup".

In order to set the environment variables for R, you will first need to check which versions of R
are installed using the "module spider R" command. This command will return a description
of the software and which versions are currently installed. Alternatively, you can use the HPCC
Red Raider Cluster Software Packages search tool online. To load the most recent version of R,

https://www.depts.ttu.edu/hpcc/userguides/general_guides/software_environment.php
https://www.depts.ttu.edu/hpcc/status/software_list.php
https://www.depts.ttu.edu/hpcc/status/software_list.php

you can run “module load gcc/10.1.0 r/4.0.2" on the Nocona partition and "module
load intel R" or "module load gnu R" command on the Quanah partition. You can then
run the "module list" command to verify that the R module has been successfully loaded. This
can be done using one of the following sets of commands:

#--- Nocona ---
#To load the version of R compiled with GNU compiler run the following:
module load gcc/10.1.0 r/4.0.2
module list

#--- Quanah ---
#To load the Intel compiled version of R run the following:
module load intel R
module list

#To load the GNU compiled version of R run the following:
module load gnu R
module list

2. How to install R in Conda
You may find that you often want to use a different version of R that is not yet built on our cluster
module. This can be accomplished by creating a separate Conda environment where your desired
version of R can be installed. If you don’t have Conda installed in your system, please read through
the installing Conda and setting up Conda environments guide before following through with the
steps given below.

The following are the steps to install R in conda.

Step 1. Create a conda environment with a name, R_nocona for example.

conda create -n R_nocona

Step 2. Activate the created conda environment.

conda activate R_nocona

Step 3. Install R and the essential R packages through R channel.

conda install -c r r r-essentials

(Note: The above command will install the latest version of R that is available in the r channel.
HPCC recommends every user to use the latest version of R as it gives better performance, and
more functionalities will be included in the latest versions.)

https://www.depts.ttu.edu/hpcc/userguides/application_guides/python.local_installation.php

If you want to install a specific version of R, use the following syntax.

conda install -c r r=version_number r-essentials

The following command gives the list of R versions available.

conda search -c r r

E.g:

conda install -c r r=3.6.0 r-essentials

Once done, you may type “R” to start running R.

Note: The Conda installation of R will compile the R packages on the local system. For example,
Nocona is equipped with AMD processors while Quanah uses Intel processors, meaning the CPU
instruction sets are different among those partitions. Therefore, you should get into a habit of
creating a different Conda environment for each partition.

3. How to write a parallel multi-core R script
Running R jobs in parallel can improve the performance of your code by allowing multiple tasks
to be executed simultaneously. The HPCC strongly recommends that you have a good grasp of
what your code is doing and what resource requirements it will need to function properly before
running it on the cluster. By default, R will always attempt to run serially, using only a single core.
If you wish to run across multiple cores, there are several ways to achieve this in R using different
packages.

3.1. Parallel packages

R packages provide built-in functions for parallel computing, including mclapply(),
mcmapply(), and parLapply(). These packages allow you to run multiple R processes in
parallel and can significantly speed up your computations.

The below is a list of useful parallel packages:

• parallel: The parallel package is included in R's base installation and provides a high-
level interface for parallel computing on local machines or clusters.

• snow: The snow package provides a simple interface for parallel computing using a
variety of parallel backends, including local sockets, MPI, and PVM.

• foreach: The foreach package provides a parallel foreach loop construct that can be used
with a variety of parallel backends, including parallel, snow, and doParallel.

• doParallel: The doParallel package provides a backend for foreach that enables parallel
computing using the parallel package.

• doMPI: The doMPI package provides a backend for foreach that enables parallel
computing using the MPI standard.

• doSNOW: The doSNOW package provides a backend for foreach that enables parallel
computing using the snow package.

• future: The future package provides a simple and unified API for parallel computing
using a variety of parallel backends, including parallel, snow, and doParallel.

• BiocParallel: The BiocParallel package provides a parallel computing framework for use
with bioinformatics tools and workflows.

3.2. How to use R parallel packages

When writing your R code, you may want to pay close attention to the packages you make use
of. There often exists numerous packages that attempt to solve the same problem, and in many
of these cases you will find that some are serial while others are parallel. Whenever possible, you
should try to use parallel packages versus serial ones. You may also want to look into the
documentation for the packages you are using to see if they have the ability to run in a parallel
fashion.

Several packages are available in R for parallel computing, including foreach, doParallel,
and parallelMap. These packages provide additional functionality and control over parallel
execution, such as specifying the number of workers and managing the distribution of data.

Before using a parallel package, make sure you install it using the following command.

install.packages(“package_name”)

To view a description of a particular package, use the following command.

packageDescription(“package_name”)

For instance:

To install “doParallel” package:

install.packages(“doParallel”)

By default R installs these packages in a system directory that requires admin privileges, If you
want to install the package in a separate directory that you have write access use the following
command

install.packages("package_name”, lib=”path”)

E.g: Installing the “doParallel” package in R_packages directory in home.

install.packages("doParallel”, lib=”~/R_packages”)

You should expect a list of mirrors to select for your installation. You can go with the closest
mirror:

--- Please select a CRAN mirror for use in this session ---
Secure CRAN mirrors

 1: 0-Cloud [https]
 2: Australia (Canberra) [https]
 3: Australia (Melbourne 1) [https]
 4: Australia (Melbourne 2) [https]
 5: Australia (Perth) [https]
 6: Austria [https]
 7: Belgium (Brussels) [https]
 8: Brazil (PR) [https]
 ……………
 ……………
 ……………
 70: USA (IA) [https]
 71: USA (MI) [https]
 72: USA (MO) [https]
 73: USA (OH) [https]
 74: USA (OR) [https]
 75: USA (TN) [https]

If you don’t want to select the CRAN mirror every time you install a package, follow the steps.

Step 1. Go to your home directory.

cd ~

Step 2. open .Rprofile file.

vi .Rprofile

Step 3. paste the script “options(repos = c(CRAN = "https://cran.rstudio.com/"))” and save the
file.

options(repos = c(CRAN = "https://cran.rstudio.com/"))

This sets the default repository to RStudio's CRAN mirror.

Now, open r terminal and install the required packages.

To view description of “doParallel” package:

packageDescription(“doParallel”)

You should expect the description of the package as shown below:

> packageDescription("doParallel")
Package: doParallel
Type: Package
Title: Foreach Parallel Adaptor for the 'parallel' Package
Version: 1.0.17
Authors@R: c(person("Folashade", "Daniel", role="cre",
 email="fdaniel@microsoft.com"), person("Microsoft",
 "Corporation", role=c("aut", "cph")), person("Steve", "Weston",
 role="aut"), person("Dan", "Tenenbaum", role="ctb"))
Description: Provides a parallel backend for the %dopar% function using
 the parallel package.
Depends: R (>= 2.14.0), foreach (>= 1.2.0), iterators (>= 1.0.0),
 parallel, utils
Suggests: caret, mlbench, rpart, RUnit
Enhances: compiler
License: GPL-2
URL: https://github.com/RevolutionAnalytics/doparallel
BugReports: https://github.com/RevolutionAnalytics/doparallel/issues
NeedsCompilation: no
Packaged: 2022-01-16 17:54:13 UTC; folashade
Author: Folashade Daniel [cre], Microsoft Corporation [aut, cph], Steve
 Weston [aut], Dan Tenenbaum [ctb]
Maintainer: Folashade Daniel <fdaniel@microsoft.com>
Repository: CRAN
Date/Publication: 2022-02-07 12:50:02 UTC
Built: R 4.0.2; ; 2023-04-20 18:02:47 UTC; unix
-- File: /home/lganji/R/x86_64-pc-linux-gnu-
library/4.0/doParallel/Meta/package.rds

The following are a few examples of usage of Parallel packages:

Example 1: “foreach” package

The foreach package in R provides a simple and flexible way to perform parallel computing using
the "foreach" loop construct. It allows you to execute R code on multiple cores or even distributed
across multiple machines. Here are the steps to use the foreach package in R:

Step 1. Load the foreach package and its parallel backend doParallel using the library()
function.

Step 2. Define the number of cores to use for parallel processing (35 in this case).

Step 3. Create a cluster object using the makeCluster() function, specifying the number of
cores to use.

Step 4. Register the cluster with the doParallel package using the registerDoParallel()
function.

Step 5. Use the foreach() function to perform parallel processing on a list or vector.

E.g:

library(doParallel)
library(foreach)
n.cores <- 35
my.cluster <- parallel::makeCluster(n.cores)
doParallel::registerDoParallel(cl = my.cluster)
data <- list(a = 1:10, b = 11:20, c = 21:30)
results <- foreach(x = data) %dopar% mean(x)
results

In this example, foreach() applies the mean() function to each element of the data list in
parallel using 35 cores. The %dopar% operator indicates that the loop should be executed in
parallel.

Example 2: “parallel” package

The parallel package in R provides a convenient way to perform parallel computing. It allows you
to execute multiple R processes in parallel on a single machine, or on a cluster of machines. Here
are the steps to use the parallel package in R.

E.g:

library(parallel)
n_cores <- 35
cl <- makeCluster(n_cores)
x <- 1:10
result <- parLapply(cl, x, function(i) i^2)

The parLapply() function splits the input vector x into chunks and distributes them across the
cores in the cluster for processing. The results are then combined into a list result.

Note that there are other functions in the parallel package, such as parSapply(),
parLapplyLB(), and mclapply(), that can also be used for parallel processing in R.

Example 3: “future” package

This package provides a simple and unified way to create and manage parallel processes in R. It
is also able to process results via a future framework without blocking other current R processes.
future package provides other functions and options for parallel and asynchronous processing,
such as future_lapply(), future_map(), and future_imap(), which are similar to the
lapply(), map(), and imap() functions in the purrr package. You can use the
future_lapply() function to apply a function to a list in parallel.

E.g:

library(future)
plan(multiprocess, workers = 2)
data <- list(a = 1:10, b = 11:20, c = 21:30)
results <- future_lapply(data, function(x) mean(x))

In this example, future_lapply() applies the mean()function to each element of the data list
in parallel using 2 cores. The plan() function specifies the parallel backend to be used.

Note: Not all R code is easily parallelizable, and parallel execution may not always result in faster
performance. Benchmarking your code and experimenting with different parallelization
strategies is important to find the most effective approach for your specific use case.

To know more about R packages, please visit R packages

4. Submitting R jobs to the Nocona Partition
For this tutorial we will be relying on an example script that will perform some R benchmarking
tests:

4.1. Submitting a Serial R job to the Nocona partition:

Step 1. Copy the serial R example directory into your home directory.

cp -r /lustre/work/examples/nocona/R_serial ~/R_serial_nocona

Step 2. Enter the newly created directory.

https://www.datacamp.com/tutorial/r-packages-guide

cd ~/R_serial_nocona

Step 3. Review the serial R job submission script and the R script files.

cat R_nocona.sh
cat serTest.R

Step 4. Submit serial R example script into Nocona partition.

sbatch R_nocona.sh

Your R script is now queued to run on the Nocona partition. You can use the "squeue --me"
command to check the status of the job. Please read the Job Submission Guide for more
information about running jobs and checking their status.

4.2. Submitting a Parallel R job to the Nocona partition:

The tutorial steps for submitting parallel R jobs to the Nocona partition is similar to the serial R
job submission, except you need to copy a parallel R example directory into your home directory.

cp -r /lustre/work/examples/nocona/R-parallel ~/R-parallel_nocona

Under this directory, you may see different parallel R example subdirectories.

~/R-parallel_nocona/R_foreach
~/R-parallel_nocona/R_mclapply
~/R-parallel_nocona/R_parLapply

You can follow the step 2-4 from the serial R job submission section in order to test each parallel
R job on Nocona partition. Please read the Job Submission Guide for more information about
running jobs and checking their status.

5. Submitting R jobs to the Quanah Partition
For this tutorial we will be relying on an example scripts that will perform some R benchmarking
tests:

5.1. Submitting a Serial R job to the Quanah partition

Step 1. Copy the serial R example directory into your home directory.

cp -r /lustre/work/examples/quanah/R_serial ~/R_serial_quanah

https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf
https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf

Step 2. Enter the newly created directory.

cd ~/R_serial_quanah

Step 3. Review the serial R job submission script and the R script files.

cat R_quanah.sh
cat serTest.R

Step 4. Submit serial R example script into Quanah partition.

sbatch R_quanah.sh

Your R script is now queued to run on the Quanah partition. You can use the "squeue --me"
command to check the status of the job. Please read the Job Submission Guide for more
information about running jobs and checking their status.

5.2. Submitting a Parallel R job to the Quanah partition

Step 1. Copy the Parallel R example directory into your home directory.

cp -r /lustre/work/examples/quanah/R-parallel ~/R-parallel_quanah

Step 2. Enter the newly created directory.

cd ~/R-parallel_quanah

Under this directory you can find different parallel R example subdirectories.

~/R-parallel_quanah/R_foreach
~/R-parallel_quanah/R_mclapply
~/R-parallel_quanah/R_parLapply

Step 3. Go to any of those directories and review the scripts.

cat R_quanah.sh
cat parTest.R

Step 4. Submit parallel example script to Quanah partition.

sbatch R_quanah.sh

https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf

Your R script is now queued to run on the Quanah partition. You can use the "squeue --me"
command to check the status of the job. Please read the Job Submission Guide for more
information about running jobs and checking their status.

5. Checking If a Job is Running in Parallel
To know the status and details of your submitted jobs, use the following command:

squeue --me

The above command provides information about your jobs on the Slurm scheduling queue,
including your job ID, partition name, number of CPUs assigned, name of the assigned node, etc.

Once your job is completed, you may check your results from the error and output files.

From the above example, your job is assigned to worker node cpu-7-43. You may check how
your job is running on that node by first logging into the node with the command “ssh cpu-7-
43” (The name of the CPU node list might differ in your system)

E.g:

ssh cpu-7-43

Then, type the command “top” to see the running processes of that node.

https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf

You can then confirm that the job is running in parallel with multiple processes running R.

	Running R Jobs on HPCC Resources
	Introduction
	Table of Contents

	1. Setting up the environment
	3. How to write a parallel multi-core R script
	3.2. How to use R parallel packages

	4. Submitting R jobs to the Nocona Partition
	4.1. Submitting a Serial R job to the Nocona partition:
	4.2. Submitting a Parallel R job to the Nocona partition:

	5. Submitting R jobs to the Quanah Partition
	5.1. Submitting a Serial R job to the Quanah partition
	5.2. Submitting a Parallel R job to the Quanah partition

