
Nextflow is designed to address numerical instability, efficient parallel execution, error
tolerance, execution provenance and traceability. It is a domain-specific language that
enables rapid pipeline development through the adaptation of existing pipelines written in
any scripting language. (Tommaso et al. 2017, Nextflow Documentation)

Nextflow can be installed and run on any POSIX compatible system (Linux, OS X, etc). It require
Bash 3.2 (or later) and Java 8 (or later, up to 17) to be install. * check you bash location and
version

which bash

bash --version

check you java version

which java

java --version

conda as a environment and software management tool, will help prepare required environment
of install nextflow. In general, HPCC recommend users using conda to install and manage

tags: HPCC , Nextflow , documentation

Nextflow Job Guide

1. Introduction of Nextflow

2. Prepration for Nextflow Installation

3. Nextflow Install

3.1 Use conda install Nextflow (recommended)

https://www.nextflow.io/docs/latest/

software by themselves.

Nextflow is inside Bioconda. Set up Bioconda accoding to documnetation. * install conda If you
haven't install conda, please consider it. Please reference to HPCC conda instructions and
some other documents Getting started with conda, Managing environments -conda.

set up channels

conda config --add channels defaults

conda config --add channels bioconda

conda config --add channels conda-forge

conda install Nextflow

We recommend to install nextflow in a conda environment, could named nxtfl. You need
to activate nxtfl every time run nexflow. For more detail information could check our HPCC
conda environment related document.

conda create -n nxtfl_env

conda activate nxtfl_env

conda install nextflow

Or using one single command: create conda environment and install nextflow

conda create -n nxtfl_env nextflow

download the executable package and create the nextflow main executable file in the
current directory.

wget -qO- https://get.nextflow.io | bash

Make the binary executable on your system

chmod +x nextflow

3.2 Or Install Nextflow from distributed package (if you install
Nextflow with conda, skip this part)

https://bioconda.github.io/user/install.html
https://www.depts.ttu.edu/hpcc/userguides/application_guides/python.local_installation.php
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://www.depts.ttu.edu/hpcc/userguides/application_guides/python.local_installation.php

Optionally, move the nextflow file to a directory accessible to your $PATH variable.
This is only required to avoid remembering and typing the full path to nextflow each
time you need to run it.

pwd

copy the path and paste it in your /.bashrc file:
nano ~/.bashrc

Run a simple hello script to test Nextflow pipeline. The hello script come with Nextflow
installation. After installation process, run following command:

nextflow run hello

The simple nextflow script job submission is quite straight forward. Using test/tutorial.nf as an
example, please seed Appendix I of the script. More detail about job submissions on our system
could refer to Our HPCC Job Submission Guide.

write a job script, named sub_tutorial.sh (as below) to submit the job script (named
tutorial.nf, Appendix I), which job script include three parts: shebang, SLURM commands
and job commands.

3.3 Validate Installation

4. Nextflow Job

4.1 Non-interactive Job Submission

https://www.depts.ttu.edu/hpcc/userguides/Job_User_Guide.pdf

#!/bin/bash
#SBATCH --job-name=nextflow-test
#SBATCH --output=%x.o%j
#SBATCH --error=%x.e%j
#SBATCH --partition nocona
#SBATCH --nodes=1
#SBATCH --ntasks=1

source /home/yannchen/miniconda3/etc/profile.d/conda.sh

conda activate nxtfl_env

cd ~

nextflow run test/tutorial.nf

submit the job script using sbatch

sbatch test/sub_tutorial.sh

Inqury an interactive session.

interactive -p nocona -c 1

Run nextflow job script in the interactive session

conda activate nxtfl_env

nextflow run test/tutorial.nf

nextflow run test/tutorial.nf --str 'Bonjour le monde'

nf-core is a community effort to collect a curated set of analysis pipelines but using Nextflow.
Available pipelines are listed on websites.

4.2 Interactive Job

5. nf-core pipelines

https://nf-co.re/pipelines

install nf-core/tools with conda

conda install nf-core

check available pipelines and their status

nf-core list

download exist pipelines

It is highly recommended to use the nf-core download command to pre-download all of the
required containers before running the pipeline and to set the
NXFSINGULARITYCACHEDIR or singularity.cacheDir Nextflow options to be able to store
and re-use the images from a central location for future pipeline runs.

The command will triger an user friendly interactive session to help you navigate the download
process.

nf-core download

5.1 Using nf-core/tools to install, mange nf-core pipelines

During the first download, the interactive session will ask about
NXF_SINGULARITY_CACHEDIR and automatically update your ~/.bashrc . The
~/.bashrc will have lines similar to the following.

#######################################
Added by `nf-core download` v2.1
export NXF_SINGULARITY_CACHEDIR="/home/yannchen/nextflow"
#######################################

run downloaded pipelines

nextflow run <pipeline>/workflow/ -c <local config file>

nextflow run <pipeline>/workflow/ -c <local config file> -resume

example of running nf-core/rnaseq pipeline using local config file
nextflow run nf-core-rnaseq-3.4/workflow/ -c test/test.config

Currently, we didn't have a standard config file to run nf-core pipelines on the RedRaider cluster.
Each running job need to have a local config file. The config file need to include three parts:
define input files, enable container, define scheduler. Please see a sample config file for running
nf-core/rnaseq (Appendix II).

use nf-core template to develop pipelines

nf-core create

6. Appendix

6.1 Appendix I tutorial.nf

https://hackmd.io/qDsRlsnzSjSRVylkFfOpZQ

#!/usr/bin/env nextflow

params.str = 'Hello world!'

process splitLetters {

 output:
 file 'chunk_*' into letters

 """
 printf '${params.str}' | split -b 6 - chunk_
 """
}

process convertToUpper {

 input:
 file x from letters.flatten()

 output:
 stdout result

 """
 cat $x | tr '[a-z]' '[A-Z]'
 """
}

result.view { it.trim() }

/*
==
 Nextflow config file for running minimal tests
==
 Defines input files and everything required to run a pipeline test.
 Use as follows:
 nextflow run nf-core/rnaseq -profile test,<docker/singularity>
--
*/

params {

6.2 Appendix II Sample config file (test.config) of running test run of
nf-core/rnaseq pipelines

 config_profile_name = 'Test profile'
 config_profile_description = 'Minimal test dataset to check function'

 // Limit resources so that this can run on GitHub Actions
 max_cpus = 2
 max_memory = '6.GB'
 max_time = '6.h'

 // Input data
 input = 'https://raw.githubusercontent.com/nf-core/test-datasets/\
 rnaseq/samplesheet/v3.4/samplesheet_test.csv'

 // Genome references
 fasta = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/genome.fa'
 gtf = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/genes.gtf.gz'
 gff = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/genes.gff.gz'
 transcript_fasta = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/transcriptome.fasta'
 additional_fasta = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/gfp.fa.gz'
 bbsplit_fasta_list = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/bbsplit_fasta_list.txt'
 hisat2_index = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/hisat2.tar.gz'
 star_index = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/star.tar.gz'
 salmon_index = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/salmon.tar.gz'
 rsem_index = 'https://github.com/nf-core/test-datasets/\
 raw/rnaseq/reference/rsem.tar.gz'

 // Other parameters
 skip_bbsplit = false
 pseudo_aligner = 'salmon'
 umitools_bc_pattern = 'NNNN'
}

// When using RSEM, remove warning from STAR whilst building tiny indices
process {
 withName: 'RSEM_PREPAREREFERENCE' {
 ext.args2 = "--genomeSAindexNbases 7"
 }

}

/*
===
 Nextflow config file for RedRaider Cluster
===
 Defines Singularity, scheduler type and cluster options

*/

singularity {
 enabled = true
 cacheDir = "/home/yannchen/nextflow"
}

process {
 executor = 'slurm'
 clusterOptions = '-p nocona -N 1 -n 2'

}

