
Indhira Margarita Pulinario¹, Ilan Arvelo², Samuel Peabody², Marcos, Sanchez -Plata, Ph.D² ¹Zamorano University, SOWER Scholar, ² Texas Tech University

Introduction

- Poultry products are subjected to USDA-Food Safety and Inspection Service (FSIS) inspection before commercialization. Inline inspection requires a speed of 35 birds per minute to assure proper observation and when necessary removal of carcasses from the line for further inspection and product disposition.
- Since 1999, FSIS evaluated the performance of a modernized inspection system, known as HIMP (HACCP-Base Inspection Models Project), and recently authorized facilities to consider the implementation of new inspection systems and line speeds up to 170 bpm.
- The New Poultry Inspection System (NPIS) requires a methodology to demonstrate microbial control when compared with the traditional inspection system; and if new line speeds are considered, they also need to be compared with a conventional microbial baseline.

Objectives

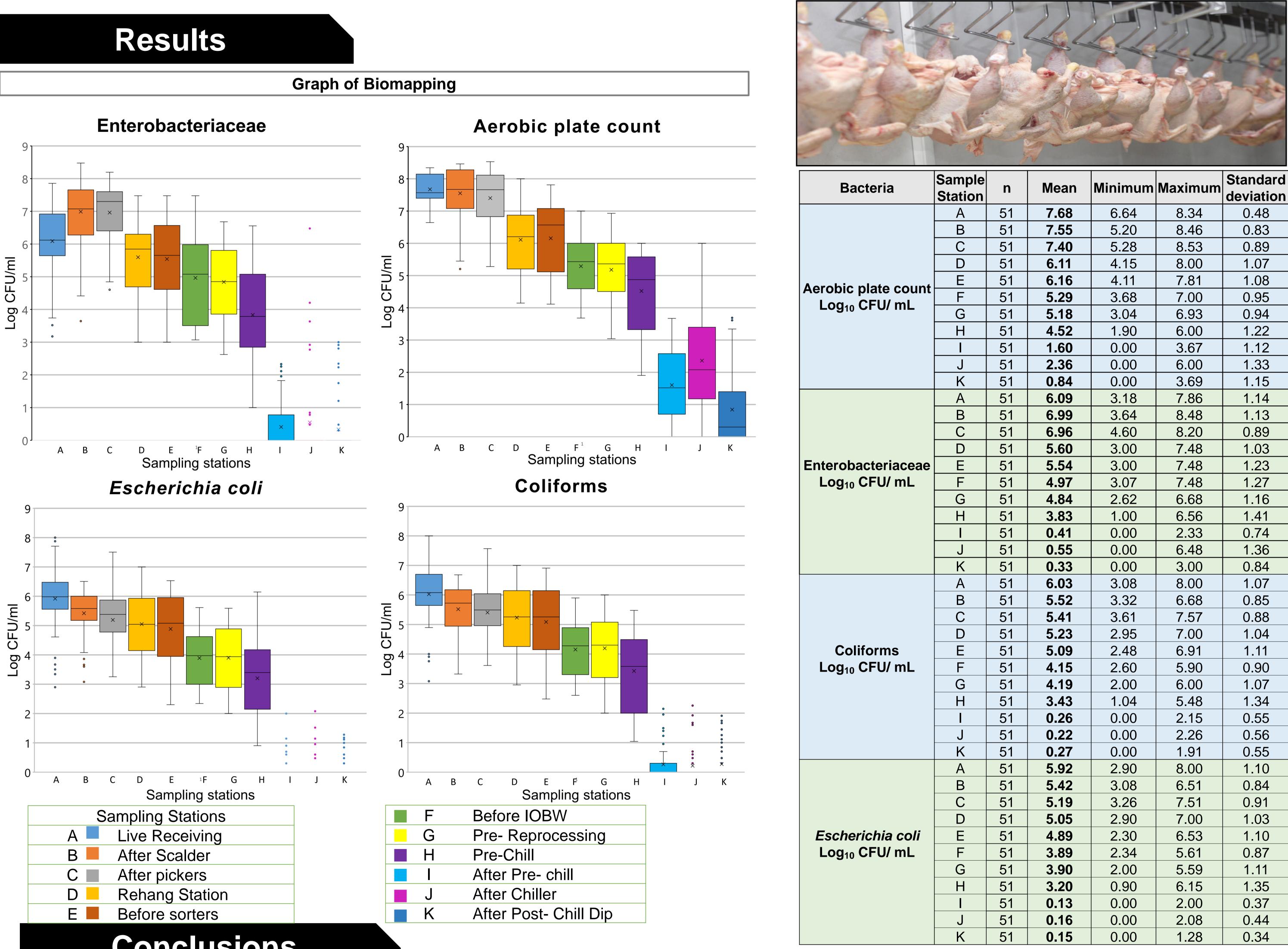
- Conduct a biomapping study of indicator bacteria to validate a new standardized protocol to establish microbial baselines to support processing modifications based on the New Poultry Inspection System (NPIS).
- Determine microbial levels Aerobic **O**T Enterobacteriaceae, Coliforms and Escherichia coli during the chicken slaughtering process and develop statistical process control parameters.

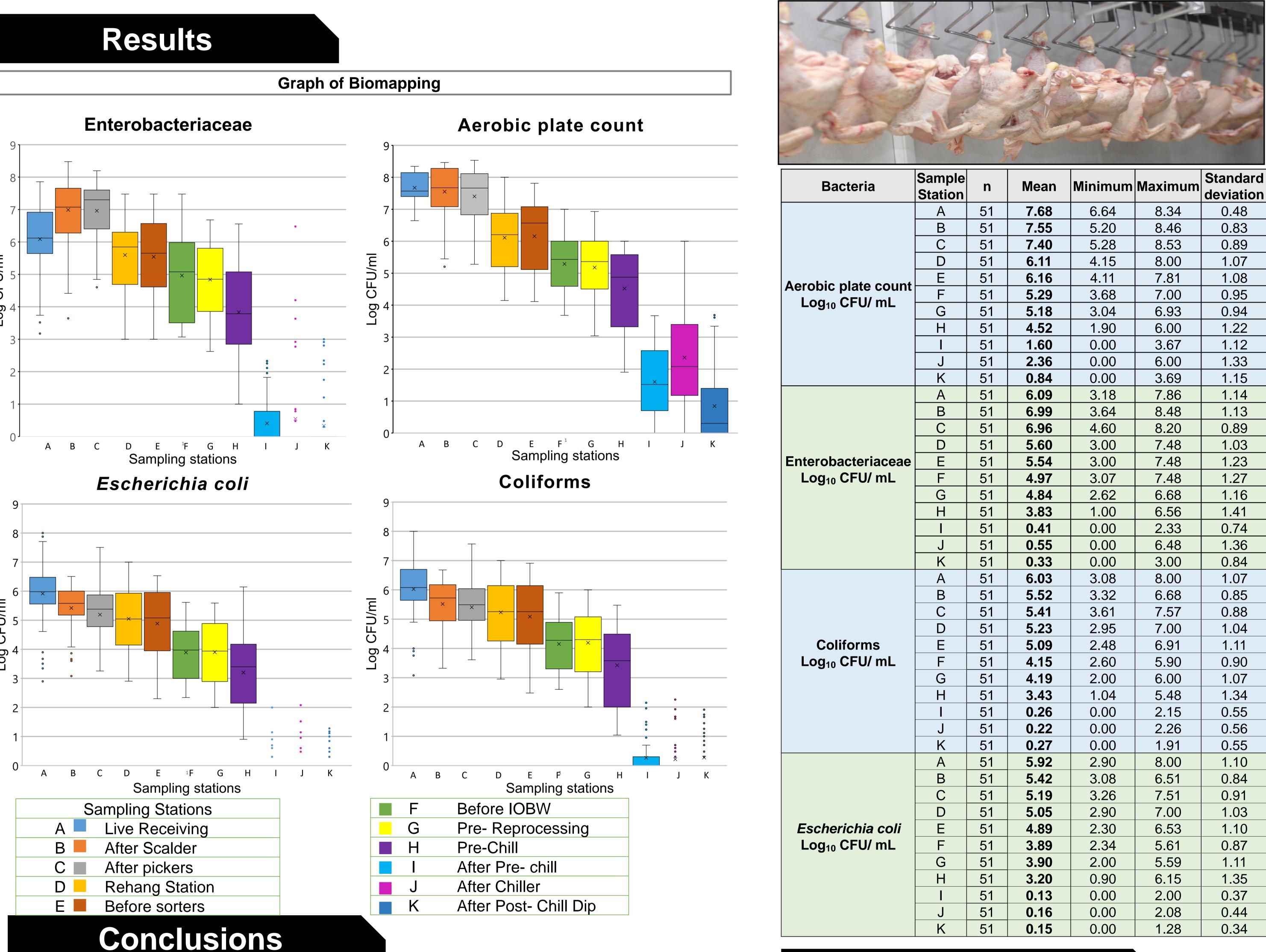
colonies are on a plate of $\frac{1}{10,000}$ dilution, then the count is $32 \times 10,000 = 320,000$ /ml in same

MATERIALS:

- Buffered Peptone Water (BPW)
- Petrifilm^{3M} Violet Red Bile for generic *Escherichia coli* and Coliforms, Petrifilm^{3M} Violet Red Bile Glucose (VRBG) for Enterobacteriaceae and Petrifilm^{3M} with standard nutrients for Aerobic plate counts.

METHODS:


- To take samples (carcasses rinse) from 11 sampling stations during a week of processing N = 10 samples per station per 5 days.
- Serial dilution from 10^{-1} to 10^{-4} using 1 ml of chicken rinsate in 9 ml of BPW and plating in Petrifilm^{3M.}


Validation of a Standardized Protocol to Establish **Microbial Baselines in Poultry Facilities**

ICFIE, Department of Animal and Food Sciences.

counts, plate

Identified samples

 \checkmark A detailed biomap on the microbial indicator loads at 11 different stations during chicken processing was developed for a commercial processing facility. \checkmark The reduction for APC showed the most representative microbial load of 6.8 Log, that represents a reduction of 99.9999% of the total initial population. of the total initial population).

than 1 Log₁₀ CFU/mL in the final processing stations. are implemented.

- ✓ Enterobacteriaceae, Coliforms and Escherichia coli showed a reduction of 5.7 Log (99.999%)
- \checkmark The utilization of Peracetic acid as an antimicrobial intervention was principally responsible for the reduction in the sampling site C-D and H-I, for this reason, it is possible to have less
- ✓ This methodology is effective for processors to demonstrate process control when changes

Thanks to the International Center for Food Industry Excellence (ICFIE) for their support in this study.

	Sample Station					
	otation	n	Mean	Minimum	Maximum	Standard deviation
e count / mL	А	51	7.68	6.64	8.34	0.48
	В	51	7.55	5.20	8.46	0.83
	С	51	7.40	5.28	8.53	0.89
	D	51	6.11	4.15	8.00	1.07
	E	51	6.16	4.11	7.81	1.08
	F	51	5.29	3.68	7.00	0.95
	G	51	5.18	3.04	6.93	0.94
	H	51	4.52	1.90	6.00	1.22
		51	1.60	0.00	3.67	1.12
	J	51	2.36	0.00	6.00	1.33
	K	51	0.84	0.00	3.69	1.15
iaceae / mL	<u>A</u>	51	6.09	3.18	7.86	1.14
	B	51	6.99	3.64	8.48	1.13
	<u> </u>	51	6.96	4.60	8.20	0.89
		51	5.60	3.00	7.48	1.03
	E	51	5.54	3.00	7.48	1.23
	F	51	4.97	3.07	7.48	1.27
	G	51	4.84	2.62	6.68	1.16
	<u> </u>	51	3.83	1.00	6.56	1.41
		51 51	0.41 0.55	0.00	2.33 6.48	0.74
	J K	51	0.33	0.00	3.00	1.36 0.84
ns / mL	A	51	6.03	3.08	8.00	1.07
	B	51	5.52	3.32	6.68	0.85
	C	51	5.41	3.61	7.57	0.88
	D	51	5.23	2.95	7.00	1.04
	E	51	5.09	2.48	6.91	1.11
	F	51	4.15	2.60	5.90	0.90
	G	51	4.19	2.00	6.00	1.07
	H	51	3.43	1.04	5.48	1.34
		51	0.26	0.00	2.15	0.55
	J	51	0.22	0.00	2.26	0.56
	K	51	0.27	0.00	1.91	0.55
a <i>coli</i> / mL	A	51	5.92	2.90	8.00	1.10
	B	51	5.42	3.08	6.51	0.84
	C	51	5.19	3.26	7.51	0.91
	D	51	5.05	2.90	7.00	1.03
	Е	51	4.89	2.30	6.53	1.10
	F	51	3.89	2.34	5.61	0.87
	G	51	3.90	2.00	5.59	1.11
	Н	51	3.20	0.90	6.15	1.35
	I	51	0.13	0.00	2.00	0.37
	J	51	0.16	0.00	2.08	0.44
	K	51	0.15	0.00	1.28	0.34

References

(FSIS). Food Safety and Inspection Service. (2015). Modernization of Poultry Slaughter Inspection. Microbiological Sampling of Raw Poultry. United State. [01 29 2019]. Retrieved from: Microbiological-Testing-Raw-Poultry%20(2).pdf

USDA United States Department of Agriculture. 2014.. Poultry Slaughter Modernization-FAQs. Retrieved from:https://www.fsis.usda.gov/wps/wcm/connect/3b7e7781-c17e-4f73-810f-f66a904f66f3/Poultry-Slaughter-FAQ_073114.pdf?MOD=AJPERES

Acknowledgements

INTERNATIONAL CENTER FOR FOOD INDUSTRY EXCELLENCE