Thank you for letting Document Delivery help you dig a little deeper.

If you need to uncover more, these resources may help.

CitationLinker

Use CitationLinker when you have a citation for an article you need to find. Enter the information you know about the citation into the Web form and CitationLinker will search for the article. If it finds full text, that link displays at the top of the menu. Additional options for searching the library catalog or E-journals will also display. CitationLinker is accessible from the Articles tab on the webpage.

RAPID ILL is only for journal article requests.

To make your Interlibrary Loan request eligible for RAPID ILL, you are required to have the following information:

1. Title of the journal - no abbreviations
2. Article title or page numbers
3. Year
4. ISSN

Log in to ILLiad and place your Interlibrary Loan request.

Google Scholar

Google Scholar provides a simple way to search for scholarly materials such as peer-reviewed papers, theses, books, preprints, abstracts, technical reports and more.

If you are on campus, a FULLTEXT@TTULib link will appear after items that are included in one of the Libraries' paid subscriptions. If you are off campus, set your Scholar Preferences to search Texas Tech University Libraries' resources.

Ask your Personal Librarian

Need more help? Ask your Personal Librarian for assistance. Every major has its very own research expert ready to assist you. If you need help finding your librarian, email libraries.reference@ttu.edu.
Achievement goal profiles for female exercise participation

Marc R. Lochbaum¹, Sarah Stevenson¹, Daniel Hilario¹, James Surles¹ and Jake Havenar²
¹Texas Tech University, Lubbock, TX
²Arizona State University, Tempe, AZ

Abstract. The diseases that most impact the lives of women may be greatly reduced with adequate exercise and diet. Unfortunately, 66% of women in the United States never engage in periods of vigorous physical activity lasting for 10 minutes in duration. Motivation for exercise is a demonstrated determinant of physical activity participation. Achievement Goal Theory offers a viable framework to investigate whether or not the core constructs, task and ego orientation and perceived ability, are able to discriminate amongst exercisers and non-exercisers. The purpose of this investigation was to determine whether task and ego orientation and perceived ability discriminated amongst American college-aged females in several stages of exercise engagement in a large sample (N = 611). It was hypothesized that females who were high in perceived ability and task orientation would report being an exerciser, whereas those reporting high ego orientation and low perceived ability would be non-exercisers. The hypothesis addressing task orientation and perceived ability was supported whereas the hypothesis concerning the ego orientation was not supported. Importantly, the results demonstrated that even between exercisers (active for more than 6 months versus less than 6 months), task orientation and perceived ability differed. This finding clearly suggests that the task orientation construct as well as perceived physical ability are important determinants for consistent long-term adherence to physical activity. Practitioners should be able to assist participants in maintaining life-long physical activity participation by promoting a task orientation and higher perceptions of physical ability.

Keywords: Goal orientations, Perceived ability, Physical activity

Introduction

In the United States, a variety of diseases greatly impacts the health of women. For instance, cardiovascular diseases that include heart disease, high blood pressure, and stroke account for approximately 27.2% of women's death in the United States (Center for Disease Control and Prevention, 2007). Currently, approximately 8.1 million women have diabetes (U.S. Department of Health and Human Services, 2006). This number is expected to double by the year 2025. Women report suffering from depression at a rate twice that of men in developed and developing countries as well as fourteen percent of women report feeling sad for all, most or some of the time in a typical 30-day period (U.S. Department of Health and Human Services, 2006). It has been shown that regular, moderate intensity-physical activity reduces the incidence of the above mentioned diseases. Unfortunately, the U.S. Department of Health and Human Services (2000) estimates that at least 60% of the US-population fails to achieve the minimum recommended amounts of moderate physical activity on most days of the week (U.S. Department of Health and Human Services, 2000). These estimates for inactivity are greater for women because women are less active than men in the United States (U.S. Department of Health and Human Services, 2000). Last and specific to the state of Texas from which the
present data were collected, 30.0% of females report being completely inactive compared to 25.5% of men (Center for Disease Control and Prevention, 2005). Based on reported differences between males and females in physical activity participation, it seems very important to investigate females specifically.

To combat these alarming physical inactivity rates, several approaches both theoretical and atheoretical have been investigated (King, Stokols et al. 2002). These approaches have had some success; and likewise, physical activity interventions following these approaches have shown some promise (Bauman et al. 2002). Yet, it has been suggested that researchers may gain a better understanding of physical activity behaviors through a variety of theoretically related psychological constructs (Bauman et al., 2002). Achievement Goal Theory (Duda, 1989; Dweck & Leggett, 1988; Nicholls, 1984a, 1984b, 1989; Roberts, 2001) is one such theory that allows for the examination of several psychological constructs.

Achievement Goal Theory has been tremendously helpful in understanding affect, cognitions, and behaviors as related to achievement motivation in both sport and exercise settings (see Biddle, 1999; Duda, 2005; Duda & Whitehead, 1998; Whitehead et al., 2004). Achievement Goal Theory is concerned with the individual's subjective interpretation of success corresponding to task and ego oriented achievement goals. Based on classic Achievement Goal Theory, a task oriented individual's action is primarily motivated by personal mastery or improvement. Success and failure in achieving personal mastery is subjectively defined by self-referenced perceptions of his or her performance. Task oriented individuals, regardless of perceived ability or competence, are hypothesized to be motivationally adaptive. In contrast, an ego oriented person strives to win and demonstrate high normative ability. This individual judges success and failure on other-referenced standards. Achievement Goal Theory proposes that an ego oriented individual will be motivationally fragile when competence is low or doubted (Nicholls, 1989; Roberts, 1992).

Numerous investigations have examined the basic premises of Achievement Goal Theory. For instance, task orientation is correlated with the following beliefs regarding achievement strategies: practice mastery is important (r = .50); skilled learning is a benefit of practice (r = .55); and that effort is a competition strategy (r = .46) (Lochbaum & Roberts, 1993). In addition, task orientation is positively correlated with higher levels of intrinsic motivation (r = .40 for males and r = .21 for females) (Duda et al., 1995; Wang & Biddle, 2001; Wang et al., 2002). Studies in physical education settings have indicated that when ego orientation is high and perceived ability is low that this coupling is associated with maladaptive achievement behaviors. For instance, Cury, Biddle, Sarrazin, and Famose (1997) reported that ego-involved adolescents with low perceived ability had significantly weaker personal investment in free choice practice on a basketball dribbling task compared to ego-involved adolescents with high perceived ability. Wang and Biddle (2001) reported in a very large British sample (n = 2,510) that ego-involved youths with lower perceived competence for physical activity indeed had lower intrinsic motivation for physical activity than the other groups of children.

It is very important to discuss that researchers have reported results contrary to Achievement Goal Theory concerning the pairing of the task orientation and perceived ability (Wang & Biddle, 2001; Wang et al., 2002). These investigations have demonstrated that motivated behavior defined by self-reported physical activity participation is highest when both the task orientation as well as perceived ability are high (Lochbaum et al., 2007; Wang & Biddle, 2001;
Wang et al., 2002). Achievement Goal Theory posits that the influence of task orientation is exerted independent of perceived ability (Duda, 1989; Dweck & Leggett, 1988; Nicholls, 1984a, 1984b, 1989; Roberts, 2001). Classic Achievement Goal Theories hypothesize that individuals holding a strong task orientation engage in adaptive achievement strategies regardless of their perceived ability because they are by definition referencing their ability to personal improvement. Thus, low ability participants are theorized to be motivated just as high ability participants hold a strong mastery orientation.

In all three of the investigations (Lochbaum, Bixby, & Wang, 2007; Wang & Biddle, 2001; Wang et al., 2002) the samples were large (N= 609, 818, and 2,510 respectively). Participants were either American college aged students (Lochbaum et al, 2007) or British high school students (Wang & Biddle, 2001; Wang et al., 2002). These investigations demonstrated that the most active individuals were high in both task orientation and perceived physical ability. In addition, Lochbaum, Bixby, Lutz, Parsons, and Akerhielm (2006) clearly demonstrated in a self-reported exercise context that perceived physical ability is a strong determinant of self-reported engagement in strenuous exercise. Hence, it may be that when examining self-reported physical activity that both orientations interact with perceptions of physical ability.

One accepted method of measuring self-reported physical activity is by way of Prochaska and DiClemente's (1983) stage-of-change model. This model describes the different phases involved in the adoption and eventual maintenance of a behavior, in this case physical activity or exercise. The phases commonly used are from Precontemplation to Maintenance. In the Precontemplation stage there is no intention to change a behavior in this case physical inactivity to physical activity. At the end of the continuum is Maintenance whereby sustained behavior change has taken place. Several research investigations have demonstrated that this stage-of-change model is an effective manner to understand important thought patterns that may be changed to influence physical activity patterns (Marcus et al., 1992; Prochaska and Velicer, 1997).

The purpose of this investigation was to determine whether task and ego orientation and perceived ability discriminated amongst females whom reported being in one of five distinct stages of exercise engagement and thought process. Based on Achievement Goal Theory, the following three distinct hypotheses were examined. First, it was hypothesized that the inactive females would have higher ego orientation and lower perceived ability than active females. Second, females who were currently active would have higher task orientation scores than inactive females. Last, females who were currently active would have high perceptions of their perceived ability.

Material and Methods

Participants: The sample comprised 611 females. Participants were between the age of 18 and 34, in college, and Caucasian (see Table 1 for complete demographic details). All participants were recruited via personal communication from a variety of exercise science courses at a large southwestern university in the USA as well as community fitness centers located within the same city as the university. Participation was voluntary - no extra credit was offered to students and no other incentives were offered to participants. All ethical procedures as outlined by the primary author's university were followed in participant recruitment and subsequent handling of their data.
Table 1. Participants demographic characteristics by percentage

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year in School</td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>12.2</td>
</tr>
<tr>
<td>Sophomore</td>
<td>15.1</td>
</tr>
<tr>
<td>Junior</td>
<td>26.3</td>
</tr>
<tr>
<td>Senior</td>
<td>29.8</td>
</tr>
<tr>
<td>Graduate School</td>
<td>16.6</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>35.6</td>
</tr>
<tr>
<td>20-21</td>
<td>30.8</td>
</tr>
<tr>
<td>22-23</td>
<td>15.6</td>
</tr>
<tr>
<td>24-25</td>
<td>6.0</td>
</tr>
<tr>
<td>26-27</td>
<td>5.1</td>
</tr>
<tr>
<td>≥28</td>
<td>6.0</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>81.0</td>
</tr>
<tr>
<td>Hispanic</td>
<td>14.6</td>
</tr>
<tr>
<td>African-American</td>
<td>2.5</td>
</tr>
<tr>
<td>Asian</td>
<td>1.4</td>
</tr>
<tr>
<td>Other</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Permission to approach these participants was granted from instructors of a variety of exercise science courses as well as instructors of personal fitness classes to approach potential participants. The primary author and several research assistants recruited participants. The explanation of the study to the potential participants was that the primary author was interested in understanding whether or not goals and perceived ability were associated with exercise participation. Consenting participants were presented with the questionnaire packet that was approved by the first author's University Human Subject's Institutional Review Board. The packet contained the GOES, PPA, SC, and questions to obtain demographic information.

The procedure to approach and collect data from the variety of courses was conducted twice. Two approximately equal samples were collected within two months time. Participants in the second data collection were instructed to not complete the packet if they had been approached earlier in the semester. Participants were asked to write in the last four digits of their student identification number. These numbers were checked as another attempt to verify that participants were not in both samples. Duplication was not found between the samples.

Measures: Goal Orientation in Exercise Scale (GOES): The GOES developed by Kilpatrick, Bartholomew, and Riemer (2003) is a 10-item scale that measures task and ego orientation in an exercise motivation context. Each item was rated after reading the following statement stem, “I feel most successful in an exercise setting when…” Example task items include “I learn something while exercising and it makes me want to participate more” and “An exercise skill I learn really feels right.” Example ego items include “Others cannot do as well as me” and “I am the only one who can exercise at some high intensity.” Kilpatrick et al. (2003) reported that the GOES has adequate psychometric properties based on the confirmatory factor analysis results (e.g., CFI = .98; AGFI = .96) and the acceptable internal consistencies (.79 for task and .90 for ego). In the present investigation, the internal consistencies (Cronbach’s α) were .80 for the task...
orientation and .78 for the ego orientation. The score for task and ego is computed with five items being summed. All 10-items were scored on a Likert-type scale ranging from 1 strongly disagree to 5 strongly agree; thus, each score ranges from a minimum of five to a maximum of 25.

Perceived Physical Ability (PPA): PPA, developed by Ryckman, Robbins, Thornton, and Cantrell (1982), is a 10-item scale that measured participants' perceptions of their physical ability. These 10 items are a subscale within Ryckman et al.'s (1982) Physical Self-Efficacy Scale. The additional two subscales were not measured in the present investigation. Each of the PPA items is rated after reading the following statement stem, “Read each of the statements listed below and indicate how strongly you agree or disagree with each statement.” Example statements include “I have excellent reflexes” and “I am not agile and graceful.” Ryckman et al. (1982) reported adequate psychometric properties for the PPA by conducting six studies to examine construct and convergent validity. In addition, the PPA's internal consistency (Cronbach's α) was acceptable at .85. For the present investigation Cronbach's α was .72. All 10 items were scored on a Likert-type scale ranging from 1 strongly disagree to 6 strongly agree and were summed for a total score. The minimum score thus is six and the maximum possible score is 60.

Stages of Change Approach (SC): The SC is comprised of five sentences that describe an individuals' current situation in regards to exercise participation (Marcus, Selby, Niaura, & Rossi, 1992). The SC is based on the five stages of the transtheoretical model. Participants were asked to circle one of five choices based on the following question, “Do you exercise regularly based on the following definition? Regular exercise is any planned physical activity (e.g., swimming, brisk walking, aerobics, jogging) performed to increase physical fitness. Such activities should be performed three to five times per week for 20 to 60 either continuous or discontinuous minutes.” The five sentences that the participants chose from were as follows: Yes, I have been exercising regularly for MORE than 6 months; Yes, I have been exercising regularly for LESS than 6 months; No, but I intend to start exercising regularly in the next 30 days; No, but I intend to start exercising regularly in the next 6 months; and No, and I do NOT intend to start exercising regularly in the next 6 months.

Data Analyses: To determine whether the goal orientations and perceptions of physical ability discriminated stages of exercise change, discriminant function analysis was conducted. To best examine goal orientation theory, all variables were entered simultaneously. Concerning the interpretation of the discriminant function analysis, structure coefficients and group centroids were examined. Pedhazur (1982) has stated that structure coefficients exceeding .3 are to be treated as meaningful. Concerning the group centroid values, a positive value at the group centroid indicates that the group has a positive score on the linear combination of the goal orientation and perceived ability variables. A negative value at the group centroid indicates that the group has a negative score on the linear combination of the goal orientation and perceived ability variables. To determine whether or not the three variables were statistically different based stages of exercise change, analyses of variance (ANOVAs) were conducted to test for between stages of change differences. ANOVAs were run on only discriminant results with structure coefficients greater than or equal to .30 in magnitude. For all statistical tests, significance was set at $p < .05$. Last, effect size (ES) estimates (Hedges, 1981) were calculated to determine the meaningfulness of reported significant differences. Cohen's (1988) interpretation guidelines for effect sizes were followed for the social sciences that an effect of .2 is small, .5 is medium, and .8 is large.
Results

Preliminary Analyses: Prior to conducting the discriminant function analyses, the frequency of participants in each stage of change was examined. Due to low numbers in the pre-contemplation stage (n = 15), participants were combined with those in the contemplation stage. In data set one, there were 179, 197, 157, and 78 participants in the maintenance, action, preparation, and pre-/contemplation stages, respectively. Table 2 contains the means and standard deviations for each group for task and ego orientation as well as perceived physical ability.

Table 2. Means and standard deviations for the discriminating variables by stages of change for exercise

<table>
<thead>
<tr>
<th>Group</th>
<th>Task Mean ± SD</th>
<th>Ego Mean ± SD</th>
<th>Perceived Ability Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-/Contemplation (n = 78)</td>
<td>16.08 ± 4.22</td>
<td>12.41 ± 4.07</td>
<td>33.08 ± 5.55</td>
</tr>
<tr>
<td>Préparation (n = 157)</td>
<td>17.56 ± 3.08</td>
<td>12.40 ± 3.60</td>
<td>35.04 ± 5.73</td>
</tr>
<tr>
<td>Action (n = 197)</td>
<td>17.74 ± 3.35</td>
<td>12.86 ± 3.54</td>
<td>36.18 ± 6.32</td>
</tr>
<tr>
<td>Maintenance (n = 179)</td>
<td>19.00 ± 3.30</td>
<td>14.20 ± 3.94</td>
<td>40.53 ± 6.62</td>
</tr>
</tbody>
</table>

Main Analyses: The discriminant function analysis indicated that the three variables accounted for 95.2% of the variance in the model with one significant discriminant function, canonical r = .41, Wilks' lambda = .82. The structure coefficients (see Table 3) for the data set indicated that task orientation and perceptions of physical ability made meaningful positive contributions to the function. The ego orientation did not make a meaningful contribution to the function. The centroid values (see Table 3) indicated that the maintenance group was very positive and the pre-/contemplation group was very negative on the function. The action group was mostly neutral. The preparation group was slightly negative.

Table 3. Discriminant function analyses

<table>
<thead>
<tr>
<th>Discriminating Variables</th>
<th>Structure Coefficients</th>
<th>Centroid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>.33</td>
<td>.64</td>
</tr>
<tr>
<td>Ego</td>
<td>.11</td>
<td>-.10</td>
</tr>
<tr>
<td>PPA</td>
<td>.81</td>
<td>-.28</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
<td>.64</td>
</tr>
<tr>
<td>Action</td>
<td></td>
<td>-.10</td>
</tr>
<tr>
<td>Preparation</td>
<td></td>
<td>-.28</td>
</tr>
<tr>
<td>Pre-/Contemplation</td>
<td></td>
<td>-.68</td>
</tr>
</tbody>
</table>

ANOVA's were conducted on task orientation and perceived ability as they were the variables with meaningful structure coefficients (≥ .30). The Ryan-Einot-Gabriel-Welsch Range post hoc test was used as the follow-up to significant (p < .05) ANOVAs. For task orientation, ANOVAs were significant for data sets one, F(3, 607) = 14.19. Post hoc tests indicated that the
maintenance participants more task orientated than all other groups (ES's = .36, .41, and .84 relative to the action, preparation and pre-/contemplation groups) and the action and preparation group were greater than the pre-/contemplation group (ES's = .48 and .43, respectively). For perceptions of physical ability, the ANOVA was significant, F(3, 607) = 36.01. Post hoc tests indicated that the maintenance participants had higher perceptions of their ability compared to all of the other groups (ES's = .66, .83, and 1.13 relative to the action, preparation and pre-/contemplation groups) and the action participants had higher perceptions of their ability compared to pre-/contemplation group (ES's = .47). The preparation and pre-/contemplation groups did not differ statistically.

Discussion

The purpose of the present investigation was to ascertain whether goal orientations and perceptions of ability assist in understanding self-reported engagement in consistent physical activity over time in a sample of college-aged females. We tested three specific hypotheses. The results were in line with our hypotheses concerning the task orientation and perceptions of perceived ability. Specifically, the findings that maintenance and action participants, the two active exercising groups, were higher in both task orientation and perceptions of their physical ability compared to both non-exercising groups supported our second and third hypothesis. These findings were not trivial as the effect sizes were all medium to strong in magnitude as reported in the results section. These finding strongly suggests that promoting personal improvement and strategies to improve perceptions of physical ability are of great importance when combating inactivity as well as combating inconsistent exercisers. Compared to past literature, this finding that maintenance and action participants are higher in task orientation and perceived ability is consistent (Lochbaum et al., 2007; Wang & Biddle, 2001; Wang et al., 2002).

A unique finding was that, significant differences in task orientation and perceptions existed between the maintenance group (i.e., consistent exercisers for at least six months) and the action group (i.e., those who have been exercising consistently for less than six months). The difference in perceived physical ability was medium to strong (ES = .68) in magnitude and the difference in task orientation was small to medium in nature (ES = .38). The difference in effect size magnitude emphasizes to the importance of perceived physical ability in long term exercise program engagement. Past research that has only examined motivation profiles comprised of both orientations and perceptions of ability have only demonstrated differences in self-reported physical activity levels (Lochbaum et al., 2007; Wang & Biddle, 2001; Wang et al., 2002). In all three of these investigations, participants regardless of motivational profile reported engaging in some level of consistent physical activity. The present investigation demonstrates significant differences between exercisers as well as non exercisers.

This finding is somewhat in contrast to Achievement Goal Theory (Duda, 1989; Dweck & Leggett, 1988; Nicholls, 1984a, 1984b, 1989; Roberts, 2001). It is obvious that differences should exist between exercisers and non exercisers on task orientation and perceived physical ability. These two groups are vastly different in their motivation for adherence to a physical exercise program. The important difference, in contrast to Achievement Goal Theory, was between the two exercise groups who are both engaging in the motivated behavior that perceived physical ability and task orientation were significantly higher in the maintenance participants. Based on Achievement Goal Theory, both groups would be predicted to score
similarly on both variables because they are actively engaged in the motivated behavior, in this case consistent physical activity.

Concerning our ego orientation hypothesis, the results demonstrated that this variable was not statistically important when discriminating amongst the different stages of exercise. Within Achievement Goal Theory, a higher ego orientation is motivationally adaptive if perceptions of ability are high (Roberts, 2001). In addition, pertinent to sustained motivation, an ego orientation combined with low perceptions of ability leads to lower motivation and most likely discontinuation of participation (Roberts, 2001). The present data failed to support either of these basic goal theory propositions. One potential reason for this failure to support was that the mean scores for ego orientation across all four groups were low compared to past research. For instance, compared to the Wang and Biddle (2001) samples, the present ego orientation data means were -1.12 and -.74 lower in effect size values. Wang and Biddle (2001) identified highly and moderately motivated exercise groups that are comparable to the maintenance and action groups in this investigation.

We cannot explain the discrepancies in mean values. Our sample of 611 females is quite large, and therefore small sample size does not account for the difference. In addition, the goal orientation scale used in this investigation ranges from 5-25 for each orientation. The mean scores for the four stages of change exercise groups were 10 to 13 points lower than the upper range. Surprisingly, this investigation's ego orientation mean score for the maintenance group was very similar to the mean scored of 14.5 reported by Kilpatrick et al. (2003). Past research has demonstrated that task orientated individuals are more likely to value adaptive achievement strategies compared to ego orientated individuals (Duda, 2005; Lochbaum & Roberts, 1993; Roberts, 2001). The ego orientation hypotheses were not supported in the present data. It appeared that the female participants simply did not rate themselves as very ego involved with respect to their exercise behaviors.

These results indicate that practitioners who aim to increase female participation in physical activity should promote a task orientation and aim to increase perceptions of physical ability. Previous research has demonstrated that high task orientation is associated with increased interest in physical activity (Cury et al.; 1997; Elliot et al., 2006). Therefore, an intervention could focus on setting goals based solely on personal improvement and mastery of physical activities. Participants should be lead to engage in activities are appropriate for their current level of physical ability so that participants are able to experience success. Thus, these individuals could be given an individualized exercise programs and assisted in following through with support and encouragement for mastery and improvement.

Although the present research was unique and has demonstrated important findings, limitations existed. One limitation was that the design did not allow for causation to be determined. It is unknown whether physical activity participation changes orientations and perceptions of physical ability or whether participants who choose to engage in physical activity simply have higher task orientation and perceived physical ability. Another limitation is that the female participants self-reported their physical activity history. It is possible that participants may have either over or underestimated the time that they have been exercisers. Future research would be well served to measure actual exercise attendance at fitness centers and physiological changes in fitness over time. Last, the sample comprised mostly undergraduate students. It is unknown whether this sample is representative of younger or older females not in a college environment. The present study conducted in a non college-aged sample would be beneficial in
order to identify whether the results pertain to all adult females.

Conclusion

Despite limitations, the present study has extended goal orientation research in the domain of self-reported exercise participation. The goal orientation framework appears to be a useful though it appears that the importance of the task orientation is directly related to perceptions of physical ability. Our hypotheses concerning the importance of a task orientation and perceptions of physical ability were supported. In addition, it was revealed that significant differences existed even amongst exercisers on these two variables. These findings support future interventions that strongly build a task orientation and high perceived physical ability thoughts. Last, it appears that an ego orientation is not pertinent to self-reported exercise involvement.

References

