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Overview of Research

Overview of Research

The primary focus of my research is the development of efficient and ac-
curate numerical methods for approximating solutions to time-dependent
differential equations.

This is a somewhat broad focus, so in particular, I consider the following
types of problems.

1. Singular Problems.
2. Nonlinear/Coupled Problems.
3. Stochastic Problems.
4. Nonlocal Problems.

A useful approach to each of these problems: Operator Splitting
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Introduction to Operator Splitting Methods

Why Operator Splitting?

Do rigorous pure mathematics as much as possible. Determine qual-
itative features of your problem. And then, when exact analysis has
reached its limit, resort to computation.

After spending an enormous amount of effort to determine precise qual-
itative information regarding the behavior of our problem, which often
has deep physical significance, we produce numerical solutions that do
not respect this qualitative information.

Invariants represent important qualitative information about the prob-
lem and it is often advantageous to respect these features when de-
signing numerical methods.
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Introduction to Operator Splitting Methods

A Nice Example

We can motivate the basic idea of operator splitting by considering the
following model problem:

u′ = Lu, t > 0 (2.1)
u(0) = u0 (2.2)

=⇒ A system of ordinary differential equations
=⇒ A semidiscretized form of the heat equation
=⇒ An operator problem in an appropriate Banach space

Regardless of the setting, the solution to (2.1)-(2.2) is given by

u(t) = exp(tL)u0 (2.3)

Joshua Lee Padgett Texas Tech University February 27, 2018 5 / 25



Introduction to Operator Splitting Methods

Operator Splitting

If L = ` ∈ C, it follows that we can write ` = a + b and

u(t) = exp(t`)u0 = exp(t(a + b))u0 = exp(ta)exp(tb)u0

This “splitting" is not guaranteed once L becomes more “complicated."

For general L = A + B, we have the following.

=⇒ Lie-Trotter splitting: u(t) = exp(tA)exp(tB)u0 +O(t2)

=⇒ Strang splitting: u(t) = exp(tA/2)exp(tB)exp(tA/2)u0 +O(t3)

=⇒ Parallel splitting:

u(t) =
1
2

[exp(tA)exp(tB) + exp(tB)exp(tA)] u0 +O(t3)
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Introduction to Operator Splitting Methods

Operator Splitting

How do we determine such error bounds?

=⇒ Taylor expansions, of course (in the finite-dimensional setting)

What about more general settings?

=⇒ Variation of parameter methods coupled with appropriate operator
conditions

=⇒ The Baker-Campbell-Hausdorff formula (a bit complicated, but
extraordinarily useful)

L = log(exp(A)exp(B))

= A + B +
1
2

[A,B] +
1
12

([A, [A,B]] + [B, [B,A]])

− 1
24

[B, [A, [A,B]]] + · · ·
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Introduction to Operator Splitting Methods

Why Do We Like Operator Splitting Methods?

Why would we continue to consider such methods when there are new
methods being developed every day?

These methods allow us to employ methods available for simpler
differential equations

Global error analysis (Splitting methods tend to perform much
better than their competitors)

We are mimicking the structure of the true solution (matrix
exponential, semigroup, resolvent family, etc.)

Exponential splitting methods have nice properties
(positive-preserving, monotone, stable, etc.)
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More Interesting Splitting Problems

Oh, no! A Nonlinear Problem!

We now set our sights higher and consider the infinitely more interesting
problem

u′ = L(u)u, t > 0 (3.4)
u(0) = u0 (3.5)

Why is this problem more interesting?

u(t) = exp
(∫ t

0
L(u(s)) ds

)
u0 ⇐⇒

[∫ t1

0
L(u(s)) ds,

∫ t2

0
L(u(s)) ds

]

In general, this condition is highly unlikely to hold!
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More Interesting Splitting Problems

Magnus Expansion

Being the stubborn people that we are, we hope that there is a way to
“force" an exponential-type solution (even if only locally).

=⇒ u(t) = exp(Ω(t ,u))u0, t ∈ [0,T∗)

Surprisingly this works! In order for the above to hold true, it can be
shown that Ω(t ,u) must satisfy the following differential equation:

Ω′t = dexp−1
Ω (L(t ,exp(Ωt )x0)), Ω0 = O

where

dexp−1
Ω (C) =

∞∑
k=0

Bk

k !
adk

ΩC,

{Bk}k∈Z+ are the Bernoulli numbers, and adk
Ω is an iterated Lie bracket,

that is,
ad0

ΩC = C, adk
ΩC = [Ω,adk−1

Ω C], k ≥ 1
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More Interesting Splitting Problems

Magnus Expansion

The Magnus differential equation that must be solved seems to be more
complicated than the original problem!

=⇒ Why go through the effort of solving such problems?

Since we are only hoping to approximate the solution, then we only
need to solve the Magnus differential equation up to some prescribed
accuracy.

=⇒ This is actually a reasonable task!
=⇒ By Picard iteration we have

Ω[0](t ,u) = O, Ω[m+1](t ,u) =

∫ t

0
dexp−1

Ω[m] (L(u(s))) ds,

with Ω(t ,u)− Ω[m](t ,u) = O(tm+1)
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More Interesting Splitting Problems

Magnus Expansion

For instance it can be shown that

exp(Ω(t))u0 − exp(tL(u(t/2))/2)u0 = O(t3)

=⇒ The drawbacks are computing matrix exponentials and dealing
with iterated commutators for error analysis.

=⇒ Just as before, this method preserves structure! (What do we
mean by “structure?")

=⇒ Splitting can now be applied in a similar manner!
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Applications of Interest

The Kawarada Problem

Consider the following quenching-combustion problem

σ(x)ut = ∆u + f (u), (x , t) ∈ Ω× [0,Tq) (4.6)
u = 0, (x , t) ∈ ∂Ω× [0,Tq) (4.7)
u = u0, (x , t) ∈ Ω× {0} (4.8)

where f is a positive, monotonically increasing function such that

lim
u→c−

f (u) = +∞ (Think f (u) = 1/(c − u)) .

Solutions to (4.6)-(4.8) may only exist locally for certain domains Ω.
Further, global and local solutions must be positive and monotonically
increasing.

=⇒ In the case of local existence, ut →∞ faster than the exponential!
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Applications of Interest

The Kawarada Problem
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Figure: Three-dimensional curvature views of u, 0 ≤ t ≤ T∗, [LEFT] and ut , T 0 ≤ t ≤ T∗,

[RIGHT] where T 0 = 0.50928649 and T∗ = 0.50939149 are used. The magenta and red curves
represent functions max−1≤x≤1 u and max−1≤x≤1 ut , respectively. The temporal derivative val-
ues concentrates about the quenching point with max−1≤x≤1 ut (x ,T∗) > 985� 1.
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Applications of Interest

The Kawarada Problem
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Figure: Solution u [LEFT] and its temporal derivative ut [RIGHT] immediately prior to quenching.

Joshua Lee Padgett Texas Tech University February 27, 2018 15 / 25



Applications of Interest

The Kawarada Problem

We can use our previously discussed methods to solve this problem
efficiently!

=⇒ Standard splitting methods (via variation of constants):

u(t) = Stu0 +
t
2

(St f (u0) + f (u(t)))

where St = exp(tA/2)exp(tB)exp(tA/2).

=⇒ Magnus Expansion:
u(t) = Ttu0

where Tt = exp(tf/2)exp(tA/2)exp(tB)exp(tA/2)exp(tf/2).

Both methods are stable and preserve positivity and monotonicity!

Joshua Lee Padgett Texas Tech University February 27, 2018 16 / 25



Applications of Interest

Predator-Prey Model

Consider the following generalized SKT predator-prey model:

ut −∆
(

d1u + s1u2 + c12vu
)

= f (u, v) (4.9)

vt −∆
(

d2v + s2v2 + c21uv
)

= g(u, v) (4.10)

defined on an appropriate domain with appropriate boundary condi-
tions.

=⇒ How to handle the self-diffusion term, ∆u2?

=⇒ How to handle the nonlinear coupling?
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Applications of Interest

Predator-Prey Model

Let’s demonstrate a possibility with just (4.9):
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Applications of Interest

Predator-Prey Model
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Figure: A log-log plot of the computational time, in seconds, versus N after 1000 iterations.
The temporal step is held constant, τ = 10−6, while h = 1/(N − 1). A linear least squares
approximates the slope of the line to be 1.75681. This indicates that the computational time
is proportional to N1.75681. Since this is slower than N2, then the proposed nonlinear splitting
scheme is highly efficient.
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Applications of Interest

Semilinear Stochastic Problem

Consider the following stochastic differential equation

Xt = [A + f (Xt )] Xt dt + g(Xt )dWt , t > 0 (4.11)
X0 = ξ0 (4.12)

where {Wt}t≥0 is a standard Brownian motion on an appropriate prob-
ability space.

=⇒ These problems are of great interest!

=⇒ In general, numerical algorithms for (4.11)-(4.12) are limited (low
convergence rates, high computational cost, etc.)
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Applications of Interest

Semilinear Stochastic Problem

Typically to improve convergence rates for approximations to
(4.11)-(4.12), we must keep higher-order derivatives.

By using Magnus expansion methods, we can derive schemes of
higher-order, by only using the simplest approximations!

=⇒ Let B = f (X0) and C = ∆Wtg(X0).

=⇒ In general, C is only a 1/2-order approximation of
∫

g(Xt ) dWt !

=⇒ By using the approximation

Xt = StX0

where St = exp(C/2)exp(t(A + B))exp(C/2), we increase the
accuracy to first-order!
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Applications of Interest

Fractional Cauchy Problem

Consider the following fractional Cauchy problem:

C
0 Dα

t u = (A + B)u, t > 0 (4.13)
u(0) = u0 (4.14)

=⇒ C
0 Dα

t u(t) :=
1

Γ(1− α)

∫ t

0
(t − s)−αu′(s) ds, 0 < α < 1

=⇒ The solution to (4.13)-(4.14) is given by u(t) = Eα,1(tα(A + B))u0,
where

Eα,β(z) :=
∞∑

k=0

zk

Γ(β + αk)
.
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Applications of Interest

Fractional Cauchy Problem

The approximation of solutions to (4.13)-(4.14) are complicated by the
nonlocal features of the problem!

=⇒ In particular, standard splitting procedures do not apply (well).

=⇒ The convergence rates are of the form O(tmα) (degenerates as
α→ 0+)

We are able to bypass these issues by considering

C
tn Dα

t u = (A + B)u − 1
Γ(1− α)

∫ tn

0
(tn+1 − s)−αu′(s) ds︸ ︷︷ ︸
:=Lu(tn)

, tn < t < tn+1

=⇒ This can yield “non-degenerate" convergence rates!
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Applications of Interest

Fractional Cauchy Problem

The previous reformulation yields a solution of the form

u(t) = Eα,1(hα(A + B))un −
∫ tn+1

tn
eα(s)Lu(s) ds, (4.15)

where

eα(s) := (tn+1 − s)α−1Eα,α((tn+1 − s)α(A + B)).

From (4.15), it can be shown that the solution to (4.13)-(4.14) is given
by

u(t) = Eα,1(hαA)Eα,1(hαB)un − Lu(tn) +O(h).

=⇒ I am currently working on further improving these results via a
Strang-type splitting approximation.
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THANK YOU!

Questions?
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