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K will be a compact subset of C,
µ (positive) Borel measure, supp(µ)⊂ K , µ(K ) = 1,

Definition (Logarithmic capacity)

cap(K ) = exp
[
− inf

µ

∫∫
log

1

|z − w |
dµ(z)dµ(w)

]
Examples

cap(D(z , r)) = r ,

cap([a, b]) = b−a
4 ,

cap(Cantor set) ≥ 1
9 .
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Definition

K is removable for bounded harmonic functions if, for every open
neighborhood U of K, each bounded harmonic function on U \ K
extends across K to be harmonic on U.

Theorem

K is removable for bounded harmonic functions if and only if
cap(K ) = 0.
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D = Ĉ \ K ,
w ∈ D,

Definition (Green function of D with pole at w)

GD(·,w) : D 7→ (0,+∞]

harmonic on D \ {w},
z 7→ GD(z ,w)− log 1

|z−w | is harmonic on D,

limz→ζ GD(z ,w) = 0, ζ ∈ ∂D except on a set of zero
logarithmic capacity.
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Theorem

D has a Green function if and only if cap(∂D) > 0.

Examples

D = {z ∈ C : |z | < 1},

GD(z ,w) = log
∣∣∣1− zw̄

z − w

∣∣∣, z ,w ∈ D.

Stamatis Pouliasis Logarithmic capacity and rational lemniscates



Definitions
Logarithmic capacity and rational lemniscates

A reflection principle for harmonic measure

Logarithmic capacity
Green function
Analytic capacity

Green function of a rectangle with pole at 0.
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Definition (Analytic capacity)

γ(K ) = sup{|f ′(∞)| : f ∈ Hol(Ĉ \ K ), ||f ||∞ ≤ 1},

where
f ′(∞) = lim

z→∞
z(f (z)− f (∞)).

Definition (Ahlfors function)

If γ(K ) > 0, ∃ unique g s.t.

γ(K ) = g ′(∞).

Also,
g(∞) = 0.
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Examples

γ(D(z , r)) = r ,

if K ⊂ R, γ(K ) = m(K)
4 ,

γ(K ) ≤ cap(K ),

if K is connected, γ(K ) = cap(K ),

if D = Ĉ \ K is bounded by n Jordan curves, then the Ahlfors
function g is an n to 1 proper holomorphic function from D to
D that maps every component of ∂D homeomorphically onto
∂D and, if a1, ..., an−1 are the finite zeros of g , then

γ(K ) = cap(K ) · exp
[
−

n−1∑
i=1

GD(ai ,∞)
]
.
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Analytic capacity introduced by L. V. Ahlfors,

Bounded analytic functions, Duke Math. J. 14, (1947), 1-11.

to study removable sets for bounded holomorphic functions (give a
“geometric” characterization of them, Painlevé problem).

Theorem (Ahlfors)

K is removable for bounded holomorphic functions if and only if
γ(K ) = 0.

Painlevé problem solved by X. Tolsa

Painlevé’s problem and the semi-additivity of analytic capacity,
Acta Math. 190 (2003), no. 1, 105-149.

Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann.
of Math. (2) 162 (2005), no. 3, 1243-1304.
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Theorem (Tolsa, semi-additivity of analytic capacity, conjectured
by A. G. Vituškin 1967)

∃ C ≥ 1 s.t.
γ(K1 ∪ K2) ≤ C (γ(K1) + γ(K2))

for all compact subsets K1 and K2 of C.

It is an open problem if we can actually take C = 1,

Open problem (Subadditivity problem)

Is it true that
γ(K1 ∪ K2) ≤ γ(K1) + γ(K2),

for all compact subsets K1 and K2 of C?
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Definition (M. Fortier Bourque and M. Younsi, 2013)

A rational function R is called d-good (d ∈ N) if

the degree of R is d,

R(∞) = 0

the open set Ω := R−1(D) is connected and bounded by d
disjoint analytic Jordan curves γi , i = 1, . . . , d.
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R(z) =
d∑

i=1

ai
z − pi

and the set

K := ∪di=1Ki

= {z ∈ C : |R(z)| ≥ 1},

is called the lemniscate of R.
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Theorem (P. Mattila and M. Melnikov, 1994)

∃ C ≥ 1 s.t. for every good rational function,

γ(K ) ≤ C
∑
i

|ai |.

Problem: compare γ(Ki ) with |ai |.

Note: Since Ki is connected, γ(Ki ) = cap(Ki ).

Stamatis Pouliasis Logarithmic capacity and rational lemniscates



Definitions
Logarithmic capacity and rational lemniscates

A reflection principle for harmonic measure

Good rational functions
Motivation
Comparison
Schwarz’s lemma

Theorem (with T. Ransford, 2015)

For every d-good rational function,

cap(Ki ) ≥ |ai |, i = 1, . . . , d ,

and

cap(K ) ≥
[ d∏
i ,j=1
i 6=j

|pi − pj |
d∏

i=1

|ai |
] 1

d2
.

If Vi is a neighborhood of Ki , R is injective on Vi and

{z ∈ Ĉ : |z | ≥ 1

r
} ⊂ R(Vi ), r > 1,

then

cap(Ki ) ≤
r6

(r2 − 1)(r − 1)4
|ai |.
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Corrolary

Let R be a good rational function, let p ∈ Ω = R−1(D) and let

Rε(z) := R(z) +
ε

z − p
, ε > 0, z ∈ Ĉ.

If Kε is the component of the lemniscate {z ∈ Ĉ : |Rε(z)| ≥ 1} of
Rε that contains p, then

cap(Kε) = O(ε), as ε→ 0.

Stamatis Pouliasis Logarithmic capacity and rational lemniscates



Definitions
Logarithmic capacity and rational lemniscates

A reflection principle for harmonic measure

Good rational functions
Motivation
Comparison
Schwarz’s lemma

Question

Given d ≥ 2, does there exist a constant C (d) > 0 with the
following property: if R(z) :=

∑d
i=1(ai/(z − pi )) is a d-good

rational function, then

cap(Ki ) ≤ C (d)|ai |,

where Ki is the component of the lemniscate
K := {z ∈ C : |R(z)| ≥ 1} containing pi?
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Question

Given d ≥ 2, does there exist a constant C (d) > 0 with the
following property: if R(z) :=

∑d
i=1(ai/(z − pi )) is a d-good

rational function, then

cap(Ki ) ≤ C (d)|ai |,

where Ki is the component of the lemniscate
K := {z ∈ C : |R(z)| ≥ 1} containing pi?

Answer: No.
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Theorem (with T. Ransford, 2015)

Let a > 0 and η ∈ ( 2
3 , 1). For p > 1 define

Rp(z) :=
a

z − p
+

p − pη

z − ip
+

p − pη

z + ip
.

Then there exists p0 := p0(a, η) such that, for all p > p0,

(i) Rp is a 3-good rational function,

(ii) the component of the lemniscate {z ∈ Ĉ : |Rp(z)| ≥ 1}
containing p has logarithmic capacity at least ap1−η/8.
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Definition (Harmonic measure of Ω with respect to z0)

Let Ω ⊂ Ĉ be an open set, E ⊂ ∂Ω and z0 ∈ Ω. Let h be the
harmonic function on Ω with boundary limits 1 on E and 0 on
∂Ω \ E. Then

ωΩ
z0

(E ) = hE (z0).
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Theorem (A reflection principle for harmonic measure)

Let R be a rational function of degree d, let ζ1, ..., ζd be the zeros
and p1, ..., pd be the poles of R and let Ω := R−1(D). Then

d∑
j=1

ωΩ
ζj

(E ) =
d∑

i=1

ω
Ĉ\Ω
pi (E ),

for every Borel set E ⊂ ∂Ω.
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Theorem

Let Ω be a finitely connected domain bounded by d disjoint
analytic Jordan curves γ1, . . . , γd , with ∞ ∈ Ω. Let f be a proper
holomorphic function of degree d from Ω to D and let ζ1, . . . , ζd
be its zeros. Suppose further that, for every i = 1, . . . , d there
exists pi in the interior of γi such that

d∑
j=1

ωΩ
ζj

(E ) =
d∑

i=1

ω
Ĉ\Ω
pi (E )

for every Borel set E ⊂ ∂Ω. Then f is a rational function.
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Thank you!
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