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Definitions Logar mlc capacnty

K will be a compact subset of C,
u (positive) Borel measure, supp(pn)C K, u(K) =1,

Definition (Loganthmlc capacity)

cap(K) = exp —inf // log

dp(z)dp(w)

e cap(D(z,r)) =
o cap([a, b]) = 232,

4
o cap(Cantor set) > 3.

r,
a
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Definitions Logarithmic capacity
Green function
Analytic capacity

Definition

K is removable for bounded harmonic functions if, for every open
neighborhood U of K, each bounded harmonic function on U \ K
extends across K to be harmonic on U.

| A

Theorem

K is removable for bounded harmonic functions if and only if
cap(K) = 0.

N
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Definitions Logarithmic capacity

Green functi
Analytic capacity

D=C\K,

w e D,

Definition (Green function of D with pole at w)
Gp(,w): D (0, +00]

@ harmonic on D \ {w},

@ z+— Gp(z,w) — log ﬁ is harmonic on D,

o lim,,¢ Gp(z,w) =0, ¢ € D except on a set of zero
logarithmic capacity.
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Definitions Logarithmic c
Green func
Analytic ca

D has a Green function if and only if cap(OD) > 0.

D={zeC:|z| <1},

1—zw
—, z,w € D.

Go(z, w) = log |-—="
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Definitions Logarithmic capacity

Green function
Analytic capacity

Green function of a rectangle with pole at 0.
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Definitions

Analytic capacity

Definition (Analytic capacity)
¥(K) = sup{|f'(c0)| : f € Hol(C\ K), ||fllo < 1},
where

f'(c0) = lim z(f(z) — f(c0)).

Z—00

N,

Definition (Ahlfors function)
If v(K) > 0, 3 unique g s.t.

Also,
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Definitions Lhmlc @ xpacm

nalytic capacity

e 6 o6 o

WD(z,r)) =r,

if K C R, y(K) = ™K,

Y(K) < cap(K),

if K is connected, v(K) = cap(K),

ifD=C \ K is bounded by n Jordan curves, then the Ahlfors

function g is an n to 1 proper holomorphic function from D to
D that maps every component of 0D homeomorphically onto
oD and, if a1, ...,an_1 are the finite zeros of g, then

Y(K) = cap(K exp{ ZGD aj, 00 }
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Definitions

Analytic capacity introduced by L. V. Ahlfors,
Bounded analytic functions, Duke Math. J. 14, (1947), 1-11.

to study removable sets for bounded holomorphic functions (give a
“geometric” characterization of them, Painlevé problem).

Theorem (Ahlfors)

K is removable for bounded holomorphic functions if and only if
Y(K) =0.

Painlevé problem solved by X. Tolsa

Painlevé’s problem and the semi-additivity of analytic capacity,
Acta Math. 190 (2003), no. 1, 105-149.

Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann.
of Math. (2) 162 (2005), no. 3, 1243-1304.
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Definitions mic capacity
nction
capacity

Theorem (Tolsa, semi-additivity of analytic capacity, conjectured
by A. G. Vituskin 1967)

dC>1st

(K1 U Kz) < C(v(K1) +7(K2))

for all compact subsets K1 and K> of C.

It is an open problem if we can actually take C =1,

Open problem (Subadditivity problem)

Is it true that

(K1 U K2) < (K1) +7(Kz2),

for all compact subsets K1 and Ky of C?
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Good rational functions
Motivation

Comparison

Schwarz's lemma

Logarithmic capacity and rational lemniscates

Definition (M. Fortier Bourque and M. Younsi, 2013)
A rational function R is called d-good (d € N) if
@ the degree of R is d,
® R(c0)=0
o the open set Q := R~Y(ID) is connected and bounded by d
disjoint analytic Jordan curves i, i =1,...,d.
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Good rational functions
Motivation

Logarithmic capacity and rational lemniscates

Schwarz's lemma

D



Logarithmic capacity and rational lemniscates

and the set

K = ULK;
= {zeC:|R(2)| > 1},

is called the lemniscate of R.
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Good rational functions
Motivation

Logarithmic capacity and rational lemniscates

Theorem (P. Mattila and M. Melnikov, 1994)

3 C > 1 s.t. for every good rational function,

Y(K) < CZ |ail.

Problem: compare v(K;) with |a;|.

Note: Since Kj is connected, v(K;) = cap(K;).
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Good rational functions
Motivation

Comparison

Schwarz's lemma

Logarithmic capacity and rational lemniscates

Theorem (with T. Ransford, 2015)

For every d-good rational function,

cap(K;) > ail, i=1,...,d,

and

- [fﬂm @qlmﬂé

ij=1
i#j

If V; is a neighborhood of K;, R is injective on V; and
A 1
{zeCil> -} CR(V), r>1

then
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Good rational functions
Motivation

Comparison

Schwarz's lemma

Logarithmic capacity and rational lemniscates

Corrolary

Let R be a good rational function, let p € Q = R~Y(D) and let

€

R.(z) := R(z) + > e>0, zeC.

Z —

If K. is the component of the lemniscate {z € C : |R(z)| > 1} of
R. that contains p, then

cap(Ke) = O(e), as e = 0.
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Good rational functions
Motivation

Comparison

Schwarz's lemma

Logarithmic capacity and rational lemniscates

Question

Given d > 2, does there exist a constant C(d) > 0 with the
following property: if R(z) :== 3. (ai/(z — p;)) is a d-good
rational function, then

cap(K;) < C(d)]ail,

where K; is the component of the lemniscate
K :={z € C:|R(z)| > 1} containing p;?
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Good rational functions
Motivation

Comparison

Schwarz's lemma

Logarithmic capacity and rational lemniscates

Question

Given d > 2, does there exist a constant C(d) > 0 with the
following property: if R(z) := 27:1(3,-/(2 — pi)) is a d-good
rational function, then

cap(K;) < C(d)]ail,

where K; is the component of the lemniscate
K :={z € C:|R(z)| > 1} containing p;?

Answer: No.
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Logarithmic capacity and rational lemniscates

Theorem (with T. Ransford, 2015)
Let a> 0 andn € (3,1). For p > 1 define

a — pl — pn
y PP PP
zZ—p zZ—Ip zZ+Ip

Ry(z) :=

Then there exists py := po(a,n) such that, for all p > py,
@ Ry is a 3-good rational function,

@ the component of the lemniscate {z € C : |Ry(2)| > 1}
containing p has logarithmic capacity at least ap'~"/8.
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Harmonic measure

A reflection principle for harmonic measure

Definition (Harmonic measure of  with respect to z)

Let Q  C be an open set, E C 0 and zy € Q. Let h be the
harmonic function on Q with boundary limits 1 on E and 0 on
OQ\ E. Then

wi(E) = he(zo).

20
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Harmonic measure
A reflection principle for harmonic measure

Theorem (A reflection principle for harmonic measure)

Let R be a rational function of degree d, let (3, ...,(q be the zeros
and py, ..., pg be the poles of R and let Q := R~1(ID). Then

d
Z wCJ Z WC\Q ’
j=1

for every Borel set E C 0XQ.
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Harmonic measure
A reflection principle for harmonic measure

Theorem

Let Q2 be a finitely connected domain bounded by d disjoint
analytic Jordan curves 71, . ..,7vq4, with co € Q. Let f be a proper
holomorphic function of degree d from Q to D and let (1, ..., q
be its zeros. Suppose further that, for every i = 1,...,d there
exists p; in the interior of y; such that

PIELGESIEALG

for every Borel set E C 0. Then f is a rational function.
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Harmonic measure

A reflection principle for harmonic measure

Thank you!




	Definitions
	Logarithmic capacity
	Green function
	Analytic capacity

	Logarithmic capacity and rational lemniscates
	Good rational functions
	Motivation
	Comparison
	Schwarz's lemma

	A reflection principle for harmonic measure
	Harmonic measure


