Logarithmic capacity and rational lemniscates

Stamatis Pouliasis

Junior Scholar Symposia Texas Tech University February 20, 2018

Joint work with Thomas Ransford

Département de mathématiques et de statistique, Université Laval

S. Pouliasis and T. Ransford, *On the harmonic measure and the capacity of rational lemniscates*, Potential Analysis, Vol. 44 (2016), Issue 2, 249–261.

K will be a compact subset of \mathbb{C} , μ (positive) Borel measure, $\operatorname{supp}(\mu) \subset K$, $\mu(K) = 1$,

Definition (Logarithmic capacity)

$$cap(K) = \exp \left[-\inf_{\mu} \iint \log \frac{1}{|z-w|} d\mu(z) d\mu(w) \right]$$

Examples

- $cap(\overline{D(z,r)}) = r$,
- $cap([a, b]) = \frac{b-a}{4}$,
- $cap(Cantor set) \ge \frac{1}{9}$.

Definition

K is removable for bounded harmonic functions if, for every open neighborhood U of K, each bounded harmonic function on $U \setminus K$ extends across K to be harmonic on U.

$\mathsf{Theorem}$

K is removable for bounded harmonic functions if and only if cap(K) = 0.

$$D = \hat{\mathbb{C}} \setminus K,$$

$$w \in D,$$

Definition (Green function of D with pole at w)

$$G_D(\cdot, w): D \mapsto (0, +\infty]$$

- harmonic on $D \setminus \{w\}$,
- $z \mapsto G_D(z, w) \log \frac{1}{|z-w|}$ is harmonic on D,
- $\lim_{z\to\zeta} G_D(z,w)=0$, $\zeta\in\partial D$ except on a set of zero logarithmic capacity.

Theorem

D has a Green function if and only if $cap(\partial D) > 0$.

Examples

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \},$$

$$G_{\mathbb{D}}(z,w) = \log \left| \frac{1 - z\overline{w}}{z - w} \right|, \qquad z, w \in \mathbb{D}.$$

Green function of a rectangle with pole at 0.

Definition (Analytic capacity)

$$\gamma(K) = \sup\{|f'(\infty)| : f \in Hol(\hat{\mathbb{C}} \setminus K), ||f||_{\infty} \le 1\},\$$

where

$$f'(\infty) = \lim_{z \to \infty} z(f(z) - f(\infty)).$$

Definition (Ahlfors function)

If $\gamma(K) > 0$, \exists unique g s.t.

$$\gamma(K) = g'(\infty).$$

Also.

$$g(\infty)=0.$$

Examples

- $\gamma(\overline{D(z,r)}) = r$,
- if $K \subset \mathbb{R}$, $\gamma(K) = \frac{m(K)}{4}$,
- $\gamma(K) \leq cap(K)$,
- if K is connected, $\gamma(K) = cap(K)$,
- if $D = \hat{\mathbb{C}} \setminus K$ is bounded by n Jordan curves, then the Ahlfors function g is an n to 1 proper holomorphic function from D to \mathbb{D} that maps every component of ∂D homeomorphically onto $\partial \mathbb{D}$ and, if $a_1, ..., a_{n-1}$ are the finite zeros of g, then

$$\gamma(K) = cap(K) \cdot \exp\Big[-\sum_{i=1}^{n-1} G_D(a_i, \infty)\Big].$$

Analytic capacity introduced by L. V. Ahlfors,

Bounded analytic functions, Duke Math. J. 14, (1947), 1-11.

to study removable sets for bounded holomorphic functions (give a "geometric" characterization of them, Painlevé problem).

$\mathsf{Theorem}\;(\mathsf{Ahlfors})$

K is removable for bounded holomorphic functions if and only if $\gamma(K) = 0$.

Painlevé problem solved by X. Tolsa

Painlevé's problem and the semi-additivity of analytic capacity, Acta Math. 190 (2003), no. 1, 105-149.

Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. of Math. (2) 162 (2005), no. 3, 1243-1304.

Theorem (Tolsa, semi-additivity of analytic capacity, conjectured by A. G. Vituškin 1967)

 $\exists C \geq 1 \text{ s.t.}$

$$\gamma(K_1 \cup K_2) \leq C(\gamma(K_1) + \gamma(K_2))$$

for all compact subsets K_1 and K_2 of \mathbb{C} .

It is an open problem if we can actually take C = 1,

Open problem (Subadditivity problem)

Is it true that

$$\gamma(K_1 \cup K_2) \leq \gamma(K_1) + \gamma(K_2),$$

for all compact subsets K_1 and K_2 of \mathbb{C} ?

Definition (M. Fortier Bourque and M. Younsi, 2013)

A rational function R is called d-good $(d \in \mathbb{N})$ if

- the degree of R is d,
- $R(\infty)=0$
- the open set $\Omega := R^{-1}(\mathbb{D})$ is connected and bounded by d disjoint analytic Jordan curves γ_i , i = 1, ..., d.

$$R(z) = \sum_{i=1}^{d} \frac{a_i}{z - p_i}$$

and the set

$$K := \bigcup_{i=1}^{d} K_i$$

= $\{z \in \mathbb{C} : |R(z)| \ge 1\},$

is called the lemniscate of R.

Theorem (P. Mattila and M. Melnikov, 1994)

 \exists $C \ge 1$ s.t. for every good rational function,

$$\gamma(K) \leq C \sum_{i} |a_i|.$$

Problem: compare $\gamma(K_i)$ with $|a_i|$.

Note: Since K_i is connected, $\gamma(K_i) = cap(K_i)$.

Theorem (with T. Ransford, 2015)

For every d-good rational function,

$$\operatorname{cap}(K_i) \geq |a_i|, \qquad i = 1, \ldots, d,$$

and

$$\operatorname{cap}(\mathcal{K}) \geq \Big[\prod_{\substack{i,j=1\i
eq i}}^d |p_i - p_j| \prod_{i=1}^d |a_i|\Big]^{rac{1}{d^2}}.$$

If V_i is a neighborhood of K_i , R is injective on V_i and

$$\{z\in\hat{\mathbb{C}}:|z|\geq\frac{1}{r}\}\subset R(V_i), \qquad r>1,$$

then

$$cap(K_i) \le \frac{r^6}{(r^2-1)(r-1)^4}|a_i|.$$

Corrolary

Let R be a good rational function, let $p \in \Omega = R^{-1}(\mathbb{D})$ and let

$$R_{\epsilon}(z) := R(z) + \frac{\epsilon}{z-p}, \qquad \epsilon > 0, \ z \in \hat{\mathbb{C}}.$$

If K_{ϵ} is the component of the lemniscate $\{z \in \hat{\mathbb{C}} : |R_{\epsilon}(z)| \geq 1\}$ of R_{ϵ} that contains p, then

$$cap(K_{\epsilon}) = \mathcal{O}(\epsilon), \quad as \ \epsilon \to 0.$$

Question

Given $d \ge 2$, does there exist a constant C(d) > 0 with the following property: if $R(z) := \sum_{i=1}^{d} (a_i/(z-p_i))$ is a d-good rational function, then

$$\operatorname{cap}(K_i) \leq C(d)|a_i|,$$

where K_i is the component of the lemniscate $K := \{z \in \mathbb{C} : |R(z)| \geq 1\}$ containing p_i ?

Question

Given $d \ge 2$, does there exist a constant C(d) > 0 with the following property: if $R(z) := \sum_{i=1}^{d} (a_i/(z-p_i))$ is a d-good rational function, then

$$\operatorname{cap}(K_i) \leq C(d)|a_i|,$$

where K_i is the component of the lemniscate $K := \{z \in \mathbb{C} : |R(z)| \ge 1\}$ containing p_i ?

Answer: No.

Theorem (with T. Ransford, 2015)

Let a > 0 and $\eta \in (\frac{2}{3}, 1)$. For p > 1 define

$$R_p(z) := \frac{a}{z-p} + \frac{p-p^{\eta}}{z-ip} + \frac{p-p^{\eta}}{z+ip}.$$

Then there exists $p_0 := p_0(a, \eta)$ such that, for all $p > p_0$,

- the component of the lemniscate $\{z \in \hat{\mathbb{C}} : |R_p(z)| \ge 1\}$ containing p has logarithmic capacity at least $ap^{1-\eta}/8$.

Definition (Harmonic measure of Ω with respect to z_0)

Let $\Omega \subset \hat{\mathbb{C}}$ be an open set, $E \subset \partial \Omega$ and $z_0 \in \Omega$. Let h be the harmonic function on Ω with boundary limits 1 on E and 0 on $\partial \Omega \setminus E$. Then

$$\omega_{z_0}^{\Omega}(E) = h_E(z_0).$$

Theorem (A reflection principle for harmonic measure)

Let R be a rational function of degree d, let $\zeta_1,...,\zeta_d$ be the zeros and $p_1,...,p_d$ be the poles of R and let $\Omega:=R^{-1}(\mathbb{D})$. Then

$$\sum_{j=1}^d \omega_{\zeta_j}^\Omega(E) = \sum_{i=1}^d \omega_{
ho_i}^{\hat{\mathbb{C}}\setminus\overline{\Omega}}(E),$$

for every Borel set $E \subset \partial \Omega$.

Theorem

Let Ω be a finitely connected domain bounded by d disjoint analytic Jordan curves γ_1,\ldots,γ_d , with $\infty\in\Omega$. Let f be a proper holomorphic function of degree d from Ω to $\mathbb D$ and let ζ_1,\ldots,ζ_d be its zeros. Suppose further that, for every $i=1,\ldots,d$ there exists p_i in the interior of γ_i such that

$$\sum_{i=1}^d \omega_{\zeta_j}^\Omega({\mathsf E}) = \sum_{i=1}^d \omega_{p_i}^{\hat{\mathbb C}\setminus\overline\Omega}({\mathsf E})$$

for every Borel set $E \subset \partial \Omega$. Then f is a rational function.

Thank you!