Algebra Preliminary Examination

May 1997

There are three sections, each containing four problems. Do THREE problems from each section. Clearly indicate the problems you wish to have graded.

I. Groups

- 1. Suppose G is a finite p-group having a unique subgroup of index p. Show that G is cyclic. [Use induction and look at G/Z(G).]
- 2. Show that there is no simple group of order 36.
- 3. If p is a prime, $|G| = p^3$ and G is not abelian, show that G' = Z(G).
- 4. Suppose G is a finite group, $H \triangleleft G$, and P is a Sylow p-subgroup of H. Let $N = N_G(P)$. Show that G = NH.

II. Rings and Modules

- 1. Let $R = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$. Show that R is not a principal ideal ring.
- 2. Let R be a simple ring with identity. Show that $M_n(R)$ is a simple ring.
- 3. Show that if $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is an exact sequence of left R-modules, then for any left R-module N,

$$0 \to Hom_R(C, N) \xrightarrow{g_*} Hom_R(B, N) \xrightarrow{f_*} Hom_R(A, N)$$

is exact.

4. Suppose R is a commutative ring, I and J are ideals in R, P is a prime ideal in R, and $I \cap J \subseteq P$. Show that $I \subseteq P$ or $J \subseteq P$.

III. Fields and Vector Spaces

1. Find the rational and Jordan canonical forms of the complex matrix

$$\left(\begin{array}{cccc}
-2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
2 & 0 & 1 & -2 \\
-1 & 0 & 0 & 0
\end{array}\right).$$

- 2. Let K be a field and $\alpha \in K$, and let m and n be relatively prime positive integers. Prove that $X^{mn} \alpha$ is irreducible in K[X] if and only if $X^m \alpha$ and $X^n \alpha$ are irreducible in K[X].
- 3. Determine all the subgroups of the Galois group and all the intermediate fields (over \mathbb{Q}) of the polynomial $f(X) = X^4 7X^2 + 10 \in \mathbb{Q}[X]$.
- 4. If A is an $n \times n$ matrix over a field F, show that A is similar (over F) to its transpose A^t .