Algebra Preliminary Examination

May 2000

There are three sections, each containing four problems. Do THREE problems from each section. Clearly indicate the problems you wish to have graded.

I. Groups

1. Let N_i be a normal subgroup of G_i for i = 1, 2. Prove that

$$(G_1 \times G_2)/(N_1 \times N_2) \cong (G_1/N_1) \times (G_2/N_2).$$

- 2. Let G be a group of order p^n , where p is a prime and n is a positive integer. Prove that G has a normal subgroup of every order p^k such that $1 \le k \le n$.
- 3. Prove that every group of order 56 is solvable.
- 4. Let G be a finite simple group and let p be a prime divisor of |G|. Prove that every element of G can be written as a product of elements of order p.

II. Rings and Modules

- 1. Let K be a field. Prove that K[x,y] is not a principal ideal domain.
- 2. If $R_1, ..., R_n$ are rings with identity and if I is an ideal in $R_1 \times \cdots \times R_n$, then show that $I = A_1 \times \cdots \times A_n$ where each A_i is an ideal in R_i . (Possible hint: Given I, let $A_k = \pi_k(I)$, where $\pi_k : R_1 \times \cdots \times R_n \to R_k$ is the canonical epimorphism.)
- 3. Let M be a left R-module. Prove that the following are equivalent:
 - i) For each ascending sequence $S_1 \subset S_2 \subset S_3 \subset \cdots \subset M$ of submodules S_i of M, there exists an integer m such that $S_m = S_{m+1} = S_{m+2} = \cdots$
 - ii) Every submodule of M is finitely generated.
- 4. Let R be a commutative ring with identity. A subset S of R is called a <u>multiplicative set</u> if it contains 1, is closed under multiplication, and does not contain the zero element.
 - a. Prove that an ideal I of R is prime if and only if there is a multiplicative set S such that I is maximal among ideals disjoint from S.
 - b. Prove that the set of all nilpotent elements of R equals the intersection of all the prime ideals of R. (Hint: If s is not nilpotent, $\{1, s, s^2, \ldots\}$ is a multiplicative set.)

III. Fields and Vector Spaces

1. Find the rational canonical form and the Jordan canonical form of the complex matrix

$$\left(\begin{array}{cccc} 0 & 1 & 2 & 0 \\ 1 & 2i & 2i & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \end{array}\right).$$

- 2. Consider the field extension $K \subset K(x)$. Let $\beta \in K(x) K$. Prove that β is transcendental over K and that $[K(x):K(\beta)] < \infty$.
- 3. Let F be the splitting field of x^3-2 over the field $\mathbb Q$ of rational numbers. Describe the Galois group of F over $\mathbb Q$ and determine all the intermediate fields.
- 4. Let K_1 and K_2 be Galois extensions of $K = K_1 \cap K_2$ with Galois groups G_1 and G_2 . Let $K_3 = K_1 K_2$ be the composite field (which is generated by $K_1 \cup K_2$).
 - i) Prove that K_3 is a Galois extension of K.
 - ii) Prove that the Galois group G_3 of K_3 over K is isomorphic to $G_1 \times G_2$.