Algebra, May 2013

Work two problems from each section, i.e., eight problems altogether. Clearly indicate which eight are to be graded. Otherwise, we will grade 1,2,4,5,7,8,10, and 11.

GROUPS

PROBLEM 1:

Let G be a group of order 21p, where p is a prime > 7. Show that G has a normal subgroup of index 3.

PROBLEM 2:

Let p and q be primes with $p \mid q+1$ and p odd. Show that any two subgroups of GL(2,q) of order p are conjugate.

PROBLEM 3:

Let n be a natural number, and let $0 \le i \le n$. Show that the number of subgroups of the n-fold cartesian product C_2^n of order 2^i is equal to the number of subgroups of C_2^n of order 2^{n-i} . (Here, C_2 denotes the cyclic group of order 2.)

RINGS

PROBLEM 4:

Consider the commutative ring $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}.$

- 1. Show that the subset $I = \{a + b\sqrt{-5} \mid a = b \mod 2\}$ is an ideal.
- 2. Show that the assignment $(r,s) \mapsto (2r + (1+\sqrt{-5})s, 2s + (1-\sqrt{-5})r)$ defines an isomorphism $R \oplus R \cong I \oplus I$.
- 3. Show that I is not principal and conclude that I is a non-free projective R-module.

PROBLEM 5:

Consider the ring of all real-valued continuous functions defined on the interval [0, 1]. Let R be the subring consisting of all functions f such that

f(0) = f(1). Let M be the R-module consisting of functions f such that f(0) = -f(1). Prove that

- 1. $M \oplus M \cong R \oplus R$,
- 2. M is not a free R-module.

PROBLEM 6:

A ring R is called von Neumann regular if for every element x in R there is an element r such that x = xrx.

- 1. Show that every division ring is von Neumann regular.
- 2. Show that the product of any family $\{R_u\}_{u\in U}$ of von Neumann regular rings is von Neumann regular.

MODULES

PROBLEM 7:

Let R be a ring and consider commutative diagrams of R-modules with exact rows

$$M' \xrightarrow{\alpha'} M \xrightarrow{\alpha} M'' \qquad M' \xrightarrow{\alpha'} M \xrightarrow{\alpha} M'' \longrightarrow 0$$

$$\downarrow^{\varphi} \qquad \downarrow_{\varphi''} \quad \text{and} \quad \downarrow^{\psi'} \qquad \downarrow^{\psi} \downarrow$$

$$0 \longrightarrow N' \xrightarrow{\beta'} N \xrightarrow{\beta} N'' \qquad N' \xrightarrow{\beta'} N \xrightarrow{\beta} N''$$

Show that there exist unique homomorphisms $\varphi' \colon M' \to N'$ and $\psi'' \colon M'' \to N''$, such that the diagrams remain commutative.

PROBLEM 8:

Let R be a commutative ring.

- 1. Let E be a free R-module with basis $\{e_u\}_{u\in U}$, where U is finite. Show that the functionals e_u^* given by $e_v \mapsto \delta_{uv}$ form a basis for the dual module $\operatorname{Hom}_R(E,R)$.
- 2. Show that for every finitely generated projective R-module P, the dual module $\operatorname{Hom}_R(P,R)$ is projective as well.

3. Show that for every projective R-module the natural homomorphism $P \to \operatorname{Hom}_R(\operatorname{Hom}_R(P,R),R)$ is injective, and that it is an isomorphism if P is finitely generated.

PROBLEM 9:

Let R be a commutative and Noetherian ring. Show that for every finitely generated R-module M, the dual module $\operatorname{Hom}_R(M,R)$ is finitely generated.

FIELDS

PROBLEM 10:

Show that $\mathbb{Q}(\sqrt{5+\sqrt{5}})/\mathbb{Q}$ is a Galois extension, and determine the Galois group.

PROBLEM 11:

Let L/K be a finite field extension. Show that there exists a K-algebra homomorphism $L \to M_n(K)$ if and only if $[L:K] \mid n$.

PROBLEM 12:

Let p be a prime. Prove or disprove: There exists $p \times p$ matrices X and Y over \mathbb{F}_p with XY - YX = I.