Show your calculations and provide suitable motivation for full credit.

The asterisk indicates the transpose of a vector or matrix, \oplus is the symbol for the direct sum of two subspaces of a vector space, and \otimes is the symbol used for tensor products. For any $m \in N$ write $1_m = (1, \ldots, 1)^* \in \mathbb{R}^m$, $P_m = \frac{1}{m} 1_m 1_m^*$ for the orthogonal projection onto $[1_m]$, and P_m^{\perp} for the orthogonal projection onto $[1_m]^{\perp} \cap \mathbb{R}^m$.

- 1. Let U, V denote the orthogonal complement of the subspace $\{u \in \mathbb{R}^3 : u_1 + 2u_2 u_3 = 0\}$ respectively $\{v \in \mathbb{R}^3 : -3v_1 + v_2 - v_3 = 0\}$ of \mathbb{R}^3 . Consider the coordinate-free linear model $Y = \eta + E, \eta \in \mathbb{L}, E \stackrel{d}{=} N_3(0, \sigma^2 I_3)$ for unknown $\sigma^2 \in (0, \infty)$, where $\mathbb{L} = U \oplus V$.
 - (a) Compute the projection of Y onto \mathbb{L} and the unbiased version of the ML estimator for σ^2 .
 - (b) Suppose $\mathbb{L}_0 = U$. Compute the *LR* statistic for testing $H_0 : \eta \in \mathbb{L}_0$ and determine its distribution under the null hypothesis.
- 2. Let be given the model $Y_{ij} = \mu + \alpha_i + E_{ij}$, i = 1, 2, and j = 1, 2, where μ and the α_i are real parameters, and the error variables E_{ij} are i.i.d. $N(0, \sigma^2)$ for unknown $\sigma^2 \in (0, \infty)$.
 - (a) Express $Y^* = (Y_{11}, Y_{12}, Y_{21}, Y_{22})$ in terms of the parameter vector $\theta = (\mu, \alpha_1, \alpha_2)^*$ by means of a design matrix X.
 - (b) Is this design matrix of full rank?
 - (c) If not, find a matrix \prod such that $(X^*X + \prod)^{-1}$ is a generalized inverse of X^*X .
 - (d) Is $\alpha_1 \alpha_2$ estimable? Why?
 - (e) Find a 95% confidence interval for $\alpha_1 \alpha_2$. (You may use the *ML* estimator $\hat{\theta} = (\hat{\mu}, \hat{\alpha_1}, \hat{\alpha_2})^*$ and the above generalized inverse $(X^*X)^-$ without explicit calculation.)
- 3. Let be given the regression model $Y = X\theta + E$, where Y is an $n \times 1$ vector of observations, X an $n \times m$ design matrix of full rank $m < n, \theta \in \mathbb{R}^m$ an unknown parameter, and $E \stackrel{d}{=} N_n(0, \sigma^2 I_n)$ the $n \times 1$ error vector with $\sigma^2 \in (0, \infty)$ unknown. Suppose X is of the form $X = (1_n | X')$, where X' is an $n \times (m - 1)$ matrix.
 - (a) Determine the ML estimator $\hat{\theta}$ of θ and its exact distribution.
 - (b) Define the vector of residuals $\hat{E} = Y X\hat{\theta}$. Compute $\mathbb{E}\hat{E}$ and prove that

$$\sum_{i=1}^{n} \widehat{E_i} = 0.$$

(c) Compute the covariance matrix of \widehat{E} .

4. Consider the model $Y_{jk} = \mu + \alpha_j + \gamma \cdot v_k + E_{jk}$, $j = 1, \ldots, J$, and $k = 1, \ldots, K$, where μ, γ , and the α_j are real parameters, $v^* = (v_1, \ldots, v_K)$ a given vector in \mathbb{R}^K , and the E_{jk} are independent error variables with the same $N(0, \sigma^2)$ distribution, $\sigma^2 \in (0, \infty)$ unknown. We will write $a^* = (\alpha_1, \ldots, \alpha_J)$, and assume that $a^* \mathbf{1}_J = v^* \mathbf{1}_K = 0$. Using tensor products the model says that Y (the vector of all Y_{jk}) lies in a subspace \mathbb{L} of $\mathbb{R}^J \otimes \mathbb{R}^K$.

- (a) Give a concise description of the model using tensor products.
- (b) The subspace \mathbb{L} corresponding to the model can be written as $\mathbb{L} = \mathbb{L}_1 \oplus \mathbb{L}_2 \oplus \mathbb{L}_3$, where the \mathbb{L}_j are mutually orthogonal. Specify the \mathbb{L}_j .
- (c) Suppose we want to test the null hypothesis $H_0: \gamma = 0$. Compute the numerator of the *LR* test statistic for this problem.

Design of Experiments: Prelim Problems May 2014

- Do All the Problems.
- For each test, state the null and alternative hypotheses in terms of the model parameters.
- All parts have equal weights.
- 1. The yield of a chemical process is being studied. The two factors of interest are temperature and pressure. Three levels of each factor are selected; however, only 9 runs can be made in one day. The experimenter runs a complete replicate of the design on each day. The summary data for yield are shown in the following table.

Factor	Level	Mean
Day	1	87.944
	2	89.644
Temperature	Low	85.783
	Medium	89.067
	High	91.533
Pressure	250	88.517
	260	88.300
	270	89.567
Overall		88.794

In addition, we have

SSE = 4.250 SST = 127.069

- (a) Write a linear model equation appropriate for analyzing the responses from this experiment. Clearly state the assumptions and conditions for this model.
- (b) Calculate the sum of squares for Day, Temperature, and Pressure.
- (c) Write the ANOVA table appropriate for your model.
- (d) Test all relevant hypotheses. Make sure to write all the null and alternative hypotheses in terms of the parameters defined in part (a). Use $\alpha = 0.05$.
- 2. A production engineer studied the effects of machine-model and operator on the output in a bottling plant. Three bottling machines were used, each a different model. Twelve operators were chosen at random. Four operators were assigned to a machine and worked six-hour shifts each. Data on the number of cases produced by each machine and operator per hour were collected for five days. The following summary data were obtained:

Mean (Cases of Bottles per Hour)					
	-	Machine	e		
Operator	1	2	3		
1	61.80	75.80	76.80		
2	67.80	75.20	69.60		
3	62.60	55.80	74.40		
4	52.60	77.00	73.40		
Overall	61.20	70.95	73.55	68.57	
SS(Machine	e) = 169)5.633	SSE =	= 1132.800	0 SSTotal = 5100.733

- a) Write a linear model equation appropriate for analyzing the responses from this experiment. Clearly state the assumptions and conditions for this model.
- b) Write the ANOVA table appropriate for your model and include the E(MS) column.
- c) Test the relevant hypotheses at the 0.05 level of significance each.
- d) Let μ_i , i = 1, 2, 3 denote the mean number of cases produced by the three machines. Test $H_0: \mu_1 = 0.5(\mu_2 + \mu_3)$ vs. $H_1: \mu_1 < 0.5(\mu_2 + \mu_3)$ at the 0.05 level of significance. Clearly state your conclusion.
- e) Estimate the intra-operator correlation coefficient.
- f) Find a 95% confidence interval for the ratio $\sigma_{\beta}^2/\sigma^2$, where σ_{β}^2 and σ^2 are the operator and error variances, respectively.