Complex Analysis ## **Preliminary Examination** August 2003 Answer all questions completely. Calculators may not be used. Notation: $\mathbb{D} = \{z : |z| < 1\}$; for G a region in \mathbb{C} , let $H(G) = \{f : f \text{ is analytic on } G\}$. - 1. Let z_1, z_2, \ldots, z_n be n points in $\mathbb C$ and for $z \in \mathbb C$ let $d(z, z_k)$ denote the distance between z and z_k . If z is confined to the closure of a bounded domain Ω , show that $\prod_{k=1}^n d(z, z_k)$ attains its maximum on the boundary of Ω . - 2. Let f(z) be a one-to-one analytic map from \mathbb{D} into \mathbb{D} . Suppose $f(\frac{1}{2}) = 0$ and $f(0) = -\frac{1}{2}$. Find $f(-\frac{1}{2})$ and justify your answer. - 3. Let $G = \{z : 1 < |z| < 2\}$. Suppose f is analytic in G and $$\lim_{|z| \to 1, z \in G} f(z) = 0.$$ Prove f is identically zero on G. 4. Let w_1, w_2, \ldots, w_n be n points in \mathbb{D} and let $$f(z) = \prod_{j=1}^{n} \frac{(z - w_j)}{(1 - \overline{w_j}z)}.$$ Prove that f maps $\mathbb D$ onto $\mathbb D$ exactly n times (according to multiplicity). HINT: Use the argument principle. - 5. Let \mathbb{C}_{∞} denote the extended complex plane (Riemann sphere) and let D_1 and D_2 be disjoint closed circular discs in \mathbb{C} . Prove that $\mathbb{C}_{\infty} \setminus \{D_1 \cup D_2\}$ is conformally equivalent to an annulus. - 6. Let f be an entire function such that f(z+1) = f(z+i) = f(z) for all z. Show that f is constant. - 7. Let Ω be the shaded region bounded by the x-axis and the circular arcs pictured below: Assume the circular arcs meet perpendicularly at i and -i. Find a conformal map of Ω onto \mathbb{D} sending i/2 to 0. 8. Let G be a region in \mathbb{C} . Suppose $f_n \to f$ in H(G). Show that for each k > 0, the derivatives $f_n^{(k)}$ converge to $f^{(k)}$ in H(G).