Complex Variables Preliminary Exam

August 2013

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; \mathbb{Z} — the set of integers; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $\Re(z)$ and $\Im(z)$ denote the real part of z and the imaginary part of z, respectively.

1. Let z_1, z_2, \ldots, z_n be $n \geq 3$ distinct points in the complex plane which do not lie on a straight line. Prove that if

$$z_1 + z_2 + \dots + z_n = 0$$

then no closed half-plane, the boundary of which is a straight line passing through the origin, can contain all of the points z_1, z_2, \ldots, z_n .

- **2.** (a) Let f(z) be analytic in \mathbb{D} such that f(1/n) = f(-1/n) for all integers $n \geq 2$. Prove that f(z) is an even function.
 - (b) Let g(z) be analytic in the domain $D := \{z : 0 < |z| < 1\}$. Suppose that g(z) = g(2z) for all z such that |z| < 1/2. Prove that g(z) is constant.
- **3.** Let

$$f(z) = \frac{\pi}{\sinh(\pi z)} + e^{1/z^2} + \frac{2z}{1+z^2}.$$

Locate and classify all the singularities of f(z) (including any singularity at $z = \infty$) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential). Calculate the residues of f(z) at its poles.

- **4.** Let f(z) be analytic in the strip $S := \{z : |\Re(z)| < \pi/4\}$. Suppose that f(0) = 0 and |f(z)| < 1 for all $z \in S$. Prove that $|f(z)| \le |\tan z|$ for all $z \in S$.
- **5.** Let

$$f_n(z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n}.$$

Prove that for every $\rho > 0$ there is positive integer N such that for all $n \geq N$ all zeros of $f_n(z)$ belong to the disk $\{z : |z| < \rho\}$.

6. Use a Residue Theorem to show that

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{1+x^2} \, dx = \pi \left(\sqrt{2} - 1\right).$$

7. Find the number of solutions of the equation

$$z^4 + 2z^3 + 3z^2 + z + 2 = 0$$

in the right half-plane and in the first quadrant.

- **8.** (a) State the Weierstrass Product Theorem.
 - (b) Give an example of a function f(z) analytic on \mathbb{C} , which has zeros at the points $z_n = \frac{2n-1}{2}$, $n \in \mathbb{Z}$ and no other zeros.