Numerical Analysis Preliminary Examination 2001

Department of Mathematics and Statistics

Note: Do seven of the following nine problems. Clearly indicate which seven are to be graded.

- 1. Let $U\boldsymbol{x} = \boldsymbol{b}$ where U is an $n \times n$ nonsingular upper triangular matrix. The vector \boldsymbol{x} can be computed using the algorithm $x_n = b_n/u_{n,n}$ and $x_k = (b_k \sum_{j=k+1}^n u_{k,j}x_j)/u_{k,k}$ for $k = n 1, n 2, \dots, 1$. Prove that this algorithm requires exactly $(n^2 n)/2$ subtractions and additions. (Note that $\sum_{i=1}^M i = M(M+1)/2$.)
- 2. (a) Describe the equations that characterize the best quadratic approximation to $f(x) = x^{1/2}$ in $L^2[0,1]$. That is, find equations for α, β, γ that minimize

$$\int_{0}^{1} (\alpha + \beta x + \gamma x^{2} - f(x))^{2} dx.$$

Find the best linear approximation to $f(x) = x^{1/2}$ in $L^2[0,1]$. (Find α and β .)

- 3. (a) Derive the Trapezoidal rule on interval [a, b] and then the Composite Trapezoidal rule on this interval.
 - (b) Derive the error in the Trapezoidal rule on interval [a, b] for functions $f \in C^2[a, b]$.
 - (c) Let $f(x) = x^{8/7}$ and let $T_n(f)$ denote the Composite Trapezoidal rule on [0,1] with spacing h = 1/n. Find

$$\lim_{n\to\infty} n^2 \left(\int_0^1 f(x) dx - T_n(f) \right).$$

4. **(a)** Describe the Inverse Power Method for a matrix that has distinct eigenvalues. Describe the standard error estimates for this method.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 4 & 8 & 1 & 1 \\ 0 & 0 & 10 & 3 \\ 0 & 0 & 3 & 10 \end{bmatrix}$$
.

Describe the result of Inverse Power Iteration for the matrix $(A - 2I)^{-1}$. Determine the limiting eigenvalue and eigenvector and estimate the rate of convergence of the iteration method. (First, calculate the eigenvalues of A.)

1

- 5. Suppose that matrix A is nonsingular, \boldsymbol{x} is the solution of $A\boldsymbol{x} = \boldsymbol{b}$, $||A^{-1}||_2 = 10^3$, and $||A||_2 = 10^2$. We wish to solve $B\boldsymbol{z} = \boldsymbol{b}$ where B = A C and $||C||_2 = 10^{-4}$.
 - (a) Prove that B is nonsingular.
 - (b) Find an upper bound on $\|\boldsymbol{x} \boldsymbol{z}\|_2$ in terms of $\|\boldsymbol{x}\|_2$, that is, find c > 0 such that $\|\boldsymbol{x} \boldsymbol{z}\|_2 < c\|\boldsymbol{x}\|_2$.
- 6. (a) Prove that if matrix A = M N is singular and M is nonsingular, then $||M^{-1}N|| \ge 1$ where $||\cdot||$ is any induced matrix norm.
 - (b) Prove that if matrix $A = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$ is positive definite, then the Jacobi iteration method converges for a linear system $A\boldsymbol{x} = \boldsymbol{b}$. (Hint: Consider the eigenvalues of the Jacobi iteration matrix $D^{-1}(D-A)$.)
- 7. Consider the two-point boundary-value problem y''(x) p(x)y'(x) q(x)y(x) = r(x), 0 < x < 1, with y(0) = y(1) = 0. Assume that $q(x) \ge \alpha > 0$ for $0 \le x \le 1$. Consider the difference scheme

$$\frac{(y_{j+1}-2y_j+y_{j-1})}{h^2}-p(x_j)\frac{(y_{j+1}-y_{j-1})}{2h}-q(x_j)y_j=r(x_j), \text{ for } j=1,2,\cdots,N-1,$$

with $y_0 = y_N = 0$, $x_j = jh$, and h = 1/N.

- (a) Determine the matrix A so that the above difference equations can be written as the linear system $A\mathbf{y} = h^2\mathbf{r}$ with $\mathbf{y} = [y_1, y_2, \cdots, y_{N-1}]^T$ and $\mathbf{r} = [r(x_1), r(x_2), \cdots, r(x_{N-1})]^T$.
- **(b)** Prove that if $\frac{h}{2} \max_{0 \le x \le 1} |p(x)| \le 1$, then the $(N-1) \times (N-1)$ matrix A is strictly diagonally dominant.
- 8. Consider the two-dimensional quadrature formula $\int_{-1}^{1} \int_{-1}^{1} f(x,y) dx dy \approx f(\alpha,\alpha) + f(-\alpha,\alpha) + f(\alpha,-\alpha) + f(-\alpha,\alpha) + f(-\alpha,\alpha)$

Find the value of α such that the formula is exact for every polynomial f(x,y) of degree less than or equal to 3, that is, for $f(x,y) = \sum_{i,j=0}^{3} a_{i,j}x^{i}y^{j}$.

9. Consider numerical solution of the initial-value problem y'(t) = f(t, y(t)), 0 < t < 1, $y(0) = y_0 = 0$ using the trapezoidal method $y_{k+1} = y_k + \frac{h}{2}[f(t_k, y_k) + f(t_{k+1}, y_{k+1})],$ for $k = 0, 1, \dots, N-1$, where N = 1/h and $t_k = kh$. Suppose that $\max_{0 \le t \le 1} |y'''(t)| \le M$ and that $|f(t, z) - f(t, \tilde{z})| \le L|z - \tilde{z}|$ for all $z, \tilde{z} \in R$. Assuming that hL < 1, prove that $\max_{0 \le k \le N} |y_k - y(t_k)| \le ch^2$ where the constant c does not depend on h.

(Note that
$$\int_{t_k}^{t_{k+1}} g(z)dz - \frac{h}{2}(g(t_{k+1}) + g(t_k)) = -\frac{h^3}{12}g''(\xi_k)$$
 for some $\xi_k \in (t_k, t_{k+1})$.)