Numerical Analysis Preliminary Examination 2002

Department of Mathematics and Statistics

Note: Do eight of the following nine problems. Clearly indicate which eight are to be graded.

1. Suppose that $f \in C[a, b]$ has a unique zero $x^* \in [a, b]$, f(a) < 0 and f(b) > 0. Define the two sequences $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ by $x_0 = a$ and $y_0 = b$ and for $n = 1, 2, 3, \ldots$

(i) if
$$f\left(\frac{x_{n-1}+y_{n-1}}{2}\right) < 0$$
 then $x_n = \frac{x_{n-1}+y_{n-1}}{2}$ and $y_n = y_{n-1}$

(ii) if
$$f\left(\frac{x_{n-1} + y_{n-1}}{2}\right) \ge 0$$
 then $x_n = x_{n-1}$ and $y_n = \frac{x_{n-1} + y_{n-1}}{2}$

Prove that

(a)
$$x^* \in [x_n, y_n], f(x_n) < 0 \text{ and } f(y_n) \ge 0 \text{ for } n = 0, 1, 2, \dots$$

(b)
$$|x_n - x^*| \le \frac{b-a}{2^n}$$
 for $n = 0, 1, 2, \dots$

- 2. Let $n \times n$ matrix U be a non-singular upper triangular matrix with elements u_{ij} . Consider the linear system $U\vec{x} = \vec{b}$. Describe an efficient algorithm for calculating \vec{x} . Prove that your method only requires n^2 arithmetic operations.
- 3. Consider interpolating the function f(x,y) at the n^2 points (x_i,y_j) for $i,j=1,2,\ldots,n$ where $\{x_i\}_{i=1}^n$ and $\{y_j\}_{j=1}^n$ are each pairwise distinct. Let $l_i(x)=\frac{n}{n}$ x=x.

$$\prod_{\substack{m=1\\m\neq i}}^{n} \frac{x - x_m}{x_i - x_m} \text{ and } \hat{l}_j(y) = \prod_{\substack{k=1\\k\neq j}}^{n} \frac{y - y_k}{y_j - y_k}. \text{ Let } p(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} l_i(x) \hat{l}_j(y).$$

- (a) Find c_{ij} for i, j = 1, ..., n so that p(x, y) interpolates f(x, y) at the n^2 points.
- (b) Show that $\sum_{i=1}^{n} \sum_{j=1}^{n} l_i(x) \hat{l}_j(y) = 1$.
- 4. Consider the initial-value problem $\frac{dy}{dt} = f(y,t), \ y(0) = y_0$, for $0 \le t \le 1$. Suppose that $|f(y,t)-f(z,t)| \le L|y-z|$ for $0 \le t \le 1$ and $y,z \in \mathbb{R}$. Also, suppose that the solution y(t) satisfies $\max_{0 \le t \le 1} |y''(t)| = M$. Consider the numerical scheme $y_{n+1} = y_n + hf(x_n,t_n) + \epsilon_n$ for $n = 0,1,2,\ldots,N-1$ where $t_n = nh, \ h = 1/N$ and $y_n \approx y(t_n)$. The ϵ_n are rounding errors and $|\epsilon_n| < \delta$ for all n. Prove that there are constants $c_1, c_2 > 0$ such that, $|y(1) y_N| < c_1h + c_2\frac{\delta}{h}$.

- 5. Approximate the circular quarter arc γ given by $y(t) = \sqrt{1-t^2}, 0 \le t \le 1$, by a straight line l(t) in the least squares sense using the weight function $w(t) = (1-t^2)^{-1/2}, 0 \le t \le 1$. (Recall that $\langle f, g \rangle = \int_0^1 f(t)g(t)w(t) dt$).
- 6. Let A be an invertible matrix. Suppose $A, \Delta A \in \mathbb{R}^{n \times n}$ and $b, \Delta b, x, y \in \mathbb{R}^n$ such that Ax = b and $(A + \Delta A)y = b + \Delta b$. Further let $\delta > 0$ be such that

$$||\Delta A|| \le \delta ||A||, \qquad ||\Delta b|| \le \delta ||b||, \qquad \delta \mathcal{K}(A) = r < 1$$

where $\mathcal{K}(A) = ||A|| ||A^{-1}||$ is the condition number of the matrix A.

- (a) Show that $A + \Delta A$ is non-singular.
- (b) Prove that $\frac{||y||}{||x||} \le \frac{1+r}{1-r}$.
- 7. (a) Suppose the function $f(x) = \ln(2+x)$, $-1 \le x \le 1$, is interpolated by a polynomial P_n of degree $\le n$ at the Chebyshev points $x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right)$ for $k = 0, 1, \ldots, n$. Derive a bound for the maximum error $||f P_n||_{\infty} = \max_{-1 \le x \le 1} |f(x) P_n(x)|$.
 - (b) Compare the result of part (a) with a bound for $||f t_n||_{\infty}$, where $t_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$ is the n^{th} degree Taylor polynomial of f. Also, compare the bounds in parts (a) and (b) for large n.
- 8. Consider the linear system $A\vec{x} = \vec{b}$ where A = L + D + U and L is strictly lower triangular, D is diagonal, and U is strictly upper triangular. The SOR iterative method has the form $\vec{x}^{(k+1)} = T_{\sigma}\vec{x}^{(k)} + \vec{c}$ where $\vec{c} = \left(L + \frac{1}{\sigma}D\right)^{-1}\vec{b}$ and $T_{\sigma} = (\sigma L + D)^{-1}[(1 \sigma)D \sigma U]$. Let $A = \begin{bmatrix} 2 & -5 \\ 1 & 2 \end{bmatrix}$ and $\vec{x}^{(0)} = \vec{b} = [1, 1]^T$. Prove that the SOR method with $\sigma = 1$ is not convergent but the SOR method with $\sigma = \frac{1}{2}$ is convergent.
- 9. Let $f \in C^2[a, b]$. It is known that

$$\int_{a}^{b} f(x) \, dx - f\left(\frac{a+b}{2}\right)(b-a) = \frac{(b-a)^{3}}{24}f''(\xi)$$

for some $\xi \in [a, b]$. Prove that if $f \in C^2[0, 1]$, then

$$\left| \int_0^1 f(x) \ dx - \sum_{k=0}^N \frac{1}{N} f\left(\frac{k}{N} + \frac{1}{2N}\right) \right| \le \frac{M}{24N^2}$$

where $M = \max_{0 \le x \le 1} |f''(x)|$.