Numerical Analysis Preliminary Examination 2002

Department of Mathematics and Statistics

Note: Do eight of the following nine problems. Clearly indicate which eight are to be graded.

- 1. Let A be a real, symmetric, strictly diagonally dominant $n \times n$ matrix. Suppose A = D + N, where D is a diagonal matrix and $N_{ii} = 0$ for each i.
 - (a) Show that $A\vec{x} = \vec{b}$ if and only if $\vec{x} = D^{-1}(b N\vec{x})$.
 - (b) Show that there exists a $\rho < 1$ such that for $f(\vec{x}) = D^{-1}(b N\vec{x})$,

$$||f(\vec{x}) - f(\vec{y})||_{\infty} \le \rho ||\vec{x} - \vec{y}||_{\infty}.$$

- (c) Show that the sequence $\vec{x}^{(k+1)} = D^{-1}(b N\vec{x}^{(k)})$ converges to \vec{x} .
- 2. Let the $n \times n$ matrix A have elements

$$a_{ij} = \int_0^1 e^{ix} e^{jx} dx$$

for $1 \leq i, j \leq n$. Prove that A has a Cholesky Factorization $A = L^T L$.

- 3. Let A be a nonsingular $n \times n$ real matrix and $||A^{-1}B|| = r < 1$.
 - (a) Show that A + B is nonsingular and $||(A + B)^{-1}|| \le \frac{||A^{-1}||}{1 r}$.
 - (b) Show that

$$||(A+B)^{-1} - A^{-1}|| \le \frac{||B|| \ ||A^{-1}||^2}{1-r}.$$

- 4. Let x_i^* for $i=1,2,\cdots,n$ be positive numbers on a computer. With a unit round-off error δ , $x_i^*=x_i$ $(1+\epsilon_i)$ with $|\epsilon_i|\leq \delta$, where x_i for $i=1,2,\cdots,n$ are the exact numbers.
 - (a) Consider the product $P_n = \prod_{i=0}^n x_i$ and its floating point approximation $P_n^* = \prod_{i=0}^n x_i^*$. Show that if $P_n^* = P_n(1+\epsilon)$, then ϵ satisfies

$$\epsilon \le e^{\delta(2n+1)} - 1.$$

(b) Consider the scalar product $S_2 = \vec{a}^T \vec{b}$ where $\vec{a} = (x_1, x_2)^T$ and $\vec{b} = (x_3, x_4)^T$. Let S_2^* be the floating point approximation of S_2 . Prove that

$$\frac{S_2^*}{S_2} \le e^{4\delta}.$$

5. Assume that $f \in C^3[a, b]$ and $x_0, x_0 + h, x_0 + 2h \in [a, b]$. Prove that there exist constants c_1 and c_2 such that

$$\left| f'(x_0) - \frac{1}{h} \left[-\frac{3}{2} f(x_0) + c_1 f(x_0 + h) + c_2 f(x_0 + 2h) \right] \right| \le c h^2 \max_{a \le x \le b} |f'''(x)|$$

where c > 0 is a constant independent of h.

6. Let $f(x) = \frac{1}{x}$ and $P_2(x)$ be the Lagrange quadratic polynomial that interpolates f(x) at $x_0 = 2$, $x_1 = 2.5$ and $x_2 = 4$. Recall the error formula

$$f(x) - P_2(x) = \frac{1}{6} (x - x_0) (x - x_1) (x - x_2) f'''(\xi(x)), \quad x_0 < x < x_2.$$

- (a) Using the error formula, obtain a sharp error bound for $|f(3) P_2(3)|$.
- (b) Find a function $\xi(x)$ explicitly for this problem.
- 7. Consider a quadrature formula of the type

$$\int_0^\infty e^{-x} f(x) \, dx = af(0) + bf(c) + E(f)$$

where E(f) is the error in the formula.

- (a) Find a, b and c such that the formula is exact for polynomials of the highest degree possible. (Note that $\int_0^\infty e^{-x} x^n dx = n!$).
- (b) Let P(x) be the Hermite polynomial interpolating f at the (simple) point x = 0 and double point x = 2; i.e. P(0) = f(0), P(2) = f(2) and P'(2) = f'(2). Determine $\int_0^\infty e^{-x} P(x) dx$ and compare with the result in part (a).
- (c) For the values of a, b and c found in part(a), obtain the error E(f) in the form $E(f) = Cf'''(\xi)$ for some $\xi > 0$ where C is a constant.
- 8. Consider the initial-value problem y'(t) = f(t, y) for $0 \le t \le 1$ with y(0) = a. Consider the one-step method

$$y_{k+1} = y_k + h \ \Phi(t_k, y_k, h)$$

with $y_0 = a$, h = 1/N, and $t_k = kh$ for $k = 0, 1, \dots, N$. Assume that there is a constant L such that

$$|\Phi(t, y, h) - \Phi(t, z, h)| \le L |y - z|$$

for all $t, y, z \in \mathbb{R}$. Furthermore, assume that the solution y(t) satisfies

$$|y(t+h) - y(t) - h\Phi(t, y(t), h)| \le c h^{p+1}$$

for all $t, h \in [0, 1]$. Prove that

$$|y_N - y(1)| \le c \frac{h^p}{L} (e^L - 1).$$

9. Let $f:[a,b] \to \mathbb{R}$ be a C^1 function satisfying $f'(x) \neq 0$ for $x \in [a,b]$. Let $\{p_n\}_{n=0}^{\infty}$ be the Newton iteration sequence for solving f(x) = 0 i.e., p_n satisfies

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}.$$

Assume that $p_n \in (a, b)$ for $n \ge 0$ and $\lim_{n \to \infty} p_n = r$.

(a) Show that

$$f(r) = 0.$$

(b) Prove that

$$|p_n - r| \le \max_{x \in [a,b]} \frac{|f(p_n)|}{|f'(x)|}.$$