Numerical Analysis Preliminary Examination August 2004

Department of Mathematics and Statistics

Note: Do eight of the following ten problems. Clearly indicate which eight are to be graded. No calculators are allowed.

1. Consider the following algorithm.

$$x_0 = 0$$

 $x_1 = 1$
error = abs $(x_1 - x_0)$
eps = .00001
while (error > eps) do the following steps
 $f_0 = \exp(x_0) + x_0 - 2$
 $f_1 = \exp(x_1) + x_1 - 2$
 $x_2 = x_1 - (x_1 - x_0) * f_1/(f_1 - f_0)$
 $x_0 = x_1$
 $x_1 = x_2$
error = abs $(x_1 - x_0)$
end of while

- (a) Clearly describe the purpose of the algorithm. (It is not necessary to perform calculations.)
- (b) Change the numerical method and the algorithm so that it is quadratically convergent.

2. Consider the matrix
$$A = \begin{bmatrix} -.4 & 1.0 & -.08 \\ 1.2 & -2.0 & 1.4 \\ -.6 & 1.0 & -.2 \end{bmatrix}$$
 with inverse $A^{-1} = \begin{bmatrix} 5.0 & 3.0 & 1.0 \\ 3.0 & 2.0 & 2.0 \\ 0.0 & 1.0 & 2.0 \end{bmatrix}$

- (a) Compute $||A||_1$. What is the condition number of A in the 1-norm?
- (b) Suppose $A\vec{x} = \vec{b}$ and $(A + E)\vec{y} = \vec{b}$ with $||E||_1 \le .01$. Compute the bound for $\frac{||\vec{x} \vec{y}||_1}{||\vec{x}||_1}$?
- 3. Consider the iteration method $x_{k+1} = \phi(x_k), k = 0, 1, \ldots$ for solving the nonlinear equation f(x) = 0. Consider choosing an iteration function of the form

$$\phi(x) = x - af(x) - b(f(x))^{2} - c(f(x))^{3}$$

where a, b, c are parameters to be determined. Find expressions for the parameters a, b, c such that the iteration method is of fourth order.

- 4. Let A be a $n \times n$ matrix such that $A^k \to 0$ as $k \to \infty$. Then show that,
 - (a) I A is nonsingular.

(b)
$$||(I-A)^{-1}|| \le \frac{1}{1-||A||}$$
 (Hint: First show that $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$.)

(c) Consider the iteration $\vec{x}^{(k)} = A\vec{x}^{(k-1)} + \vec{c}$, where \vec{c} is a given vector. Find \vec{z} in terms of A and \vec{c} such that $||\vec{x}^{(k)} - \vec{z}|| \to \vec{0}$ as $k \to \infty$.

- 5. Given the following differential equation $\frac{dy}{dx} = f(x,y)$
 - (a) Define the truncation error for the following two-step method

$$y_{n+1} = a_0 y_n + a_1 y_{n-1} + h[b_{-1} f(x_{n+1}, y_{n+1}) + b_0 f(x_n, y_n) + b_1 f(x_{n-1}, y_{n-1})].$$

- (b) Find conditions on the coefficients a_0 , a_1 , b_{-1} , b_0 , b_1 to make it a third order method.
- 6. Let $\{\vec{v}^{(1)}, \vec{v}^{(2)}, \cdots, \vec{v}^{(n)}\}\$ be a set of nonzero vectors associated with a positive definite matrix A which satisfy $\langle \vec{v}^{(i)}, A\vec{v}^{(j)} \rangle = 0$ if $i \neq j$, where the innerproduct is given by $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.
 - (a) Show that the given set of nonzero vectors associated with A is linearly independent.
 - (b) If $A\vec{x} = \vec{b}$, find \vec{x} in terms of $\vec{v}^{(1)}, \vec{v}^{(2)}, \dots, \vec{v}^{(n)}$
- 7. Let $f \in C^2[a, b]$. It is known that $\int_a^b f(x)dx \frac{b-a}{2}[f(a) + f(b)] = -(b-a)^3 \frac{f''(\xi)}{12}$ for some $\xi \in [a, b]$. Prove that for $f \in C^2[0, 1]$ and $M = \max_{0 \le x \le 1} |f''(x)|$,

$$\left| \int_0^1 f(x)dx - \sum_{k=0}^{N-1} \frac{1}{2N} \left[f\left(\frac{k}{N}\right) + f\left(\frac{k+1}{N}\right) \right] \right| \le \frac{M}{12N^2}.$$

- 8. Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 > \lambda_2 > \dots > \lambda_n 0$ where $\lambda_1 = 1$, $\lambda_2 = \frac{1}{2}$ along with the corresponding eigenvectors $\vec{z_1}, \vec{z_2}, \dots, \vec{z_n}$ where $\|\vec{z_i}\|_{\infty} = 1$ for each i.
 - (a) Let $\vec{x}_k = A\vec{x}_{k-1}$ for $k = 1, 2, \ldots$ where $\vec{x}_0 = \vec{z}_1 + 8\vec{z}_2$. Find the number of iterations k so that $\|\vec{x}_k \vec{z}_1\|_{\infty} \leq \frac{1}{2^{17}}$.
 - (b) Now consider $\vec{x}_k = (10A 9I)^{-1}\vec{x}_{k-1}$ for k = 1, 2, ... where $\vec{x}_0 = \vec{z}_1 + 8\vec{z}_2$. Find the number of iterations k so that $\|\vec{x}_k \vec{z}_1\|_{\infty} \le \frac{1}{2^{17}}$.
- 9. Let $f \in C^6[-1,1]$.
 - (a) Construct the Hermite interpolating polynomial p(x) on the interval [-1,1] such that $p(x_i) = f(x_i)$ and $p'(x_i) = f(x_i)$ for $x_i = -1, 0, 1$.
 - (b) Give an expression for interpolation error Err(f) = p(x) f(x).
 - (c) Show that the following quadrature formula

$$\int_{-1}^{1} f(x)dx = \frac{7}{15}f(-1) + \frac{16}{15}f(0) + \frac{7}{15}f(1) + \frac{1}{15}f'(-1) - \frac{1}{15}f'(1)$$

is exact for all polynomials of degree ≤ 5 .

10. Consider the scalar initial-value problem $\frac{dy}{dt}(t) = f(y(t)), 0 \le t \le 1, y(0) = y_0$ along with the numerical method $y_{i+1} = y_i + \frac{3}{2}hf(y_i) - \frac{1}{2}hf(y_{i+1})$ for $i = 0, 1, \dots, N-1$, where h = 1/N. Suppose that $|f(u) - f(v)| \le L|u - v|$ for $u, v \in \mathbb{R}$ and $\max_{0 \le t \le 1} |y''(t)| \le M$. Prove that if $Lh \le 1$

so that
$$\frac{1+\frac{3hL}{2}}{1-\frac{hL}{2}} \leq 1+4hL$$
, then $\max_{0\leq i\leq N}|y_i-y(t_i)|\leq \frac{M}{2L}e^{4L}h$ where y_i is the approximate solution and $y(t_i)$ is the exact solution at $t_i=ih, i=0,1,\cdots,N-1$.

(Hint: You may use the Taylor-type formula: $y(t_{i+1}) = y(t_i) + \frac{3h}{2}y'(t_i) - \frac{h}{2}y'(t_{i+1}) + h^2y''(\xi_i)$ for some $\xi_i \in [t_i, t_{i+1}]$.)