
Numerical Analysis Preliminary Examination May 2004
Department of Mathematics and Statistics

Note: Do eight of the following ten problems. Clearly indicate which eight are to be
graded. No calculators are allowed.

1. Consider the following algorithm to estimate

∫ 1

0

∫ x

0

f(x, y)dydx. Determine the total

number of times that f(x, y) is evaluated.

s = 0

for j = 1, 2, . . . , n

for k = 1, 2, . . . , j

s = s + f(j/n, k/n)/(n ∗ n)

end (k loop)

end (j loop)

2. Consider using the iterative refinement procedure ~x(k+1) = ~x(k) +B(~b−A~x(k)) for k ≥ 0,

to solve A~x = ~b for ~x ∈ IRn and ~b ∈ IRn with an approximate solution ~x(0) = B~b, where
B is an approximate inverse of A. Let ||I −BA|| < 1.

(a) Show that the iterative refinement procedure described above produces the se-

quence of vectors, ~x(m) =
m∑

k=0

(I −BA)kB ~b for m ≥ 0.

(b) Show that ~x(m) converges to ~x as m →∞.

3. Consider the initial-value system
d~y

dt
= (I − Bt)−1~y for 0 ≤ t ≤ 1 where ~y(t) ∈ IRn,

~y(0) = ~y0, and B is an n×n matrix with ||B‖∞ ≤ 1
2
. Euler’s method for approximating

~y(t) has the form ~yi+1 = ~yi +h(I−Bti)
−1~yi = (I +h(I−Bti)

−1)~yi for i = 0, 1, . . . , N−1,

where ti = ih and h =
1

N
. (Note that ||Bti‖∞ ≤ 1

2
for all i.)

(a) Prove that ‖~yi+1‖∞ ≤ (1 + 2h)‖~yi‖∞ for i = 0, 1, . . . , N − 1.

(b) Show that ‖~yN‖∞ ≤ e2‖~y0‖∞ for any value of N ≥ 1.

4. Assume f(x) to be a real function. Let x0, x1 be two distinct points.

(a) Prove that there is a unique polynomial p(x) of degree 3 such that p(xj) = f(xj)
and p′(xj) = f ′(xj) for j = 0, 1.

(b) Determine explicitly the polynomial interpolant described in part (a). Also give a
formula for the error.

5. Suppose that f(x) satisfies a Lipschitz condition |f(x)− f(y)| ≤ L|x− y| for all x, y ∈
[0, 1]. Let Ψ(x) be a piecewise constant approximation to f(x) on [0, 1] such that Ψ(x) =

f(xi) for xi ≤ x < xi+1 for i = 0, 1, . . . , N − 1 with xi = ih and h =
1

N
. Prove that

max
0≤x≤1

|Ψ(x)− f(x)| ≤ ch for some constant c > 0.



6. Consider the equation x3 − x− 1 = 0 which has a root ξ between 1 and 2.

(a) Determine a suitable iteration function T (x) such that ξ is a solution of x = T (x)
and T (x) is a contraction over [1, 2].

(b) Find k such that the nth iterate xn generated by the equation xn = T (xn−1) for
n ≥ 1, satisfies |xn − ξ| ≤ kn|x0 − ξ|.

7. Let {g1, g2, . . . , gn} be an orthonormal system in an inner-product space E with the
associated inner-product (·, ·). Let G be the subspace generated by g1, g2, . . . , gn. Let
f ∈ E and g∗ ∈ G satisfy f − g∗ ⊥ G.

(a) Show that g∗ is the best approximation to f in G. That is, show that ||f − g∗|| ≤

||f − g|| for any g ∈ G. Also show that g∗ =
n∑

i=1

(f, gi) gi.

(b) Let ||f || =
√

(f, f). Show that
n∑

i=1

|(f, gi)|2 ≤ ||f ||2.

8. Let λ1, λ2, . . . , λn be the eigenvalues of the n × n matrix A. Let D = P−1AP be a
diagonal matrix for some nonsingular n× n matrix P .

(a) Describe Gershgorin’s theorem for localizing eigenvalues.

(b) For any n× n matrix B, show that the eigenvalues of (A + B) are the same as the
eigenvalues of (D + P−1BP ).

(c) Using parts (a) and (b), show that the eigenvalues of A + B lie in the union of the
disks |λ − λi| ≤ κ∞(P )||B||∞, where κ∞(P ) = ||P ||∞||P−1||∞ is the infinity-norm
condition number of the matrix P .

9. Let ~p = [1, 2, . . . , n]T ∈ Rn and let A be the n × n matrix A = ~p~pT . Consider the
power method of the form ~xi+1 = A~xi/‖A~xi‖2 for i = 0, 1, 2, . . . with ~x0 = [1, 1, . . . , 1]T .
Suppose A~x0 6= ~0. Show that the sequence {~xi}∞i=0 converges and determine explicitly
the vector ~v ∈ IRn to which the sequence converges.

10. Given the initial value problem
dy

dt
= f(t, y), y(a) = η for the function y(t) over the

interval a ≤ t ≤ b. Consider the general two-step method on the discrete point set
defined by tn = a + nh for n = 0, . . . ,m with h = (b− a)/m. If we write yn = y(tn) and
fn = f(tn, yn) the general two-step method becomes

2∑
j=0

αj yn+j = h
2∑

j=0

βjfn+j .

Assume that α2 = 1 and α0 = c, where c is a parameter.

(a) Show that, by selecting α1, β0, β1 and β2 appropriately, the method is third order
for c 6= −1.

(b) Show that if c = −1, the order of the method is at most 4.

(c) Show that if c = −5, the method can be third order and explicit.


