Numerical Analysis Preliminary Examination May 2004

Department of Mathematics and Statistics

Note: Do eight of the following ten problems. Clearly indicate which eight are to be graded. No calculators are allowed.

1. Consider the following algorithm to estimate $\int_0^1 \int_0^x f(x,y) dy dx$. Determine the total number of times that f(x,y) is evaluated.

```
s = 0
for j = 1, 2, ..., n
for k = 1, 2, ..., j
s = s + f(j/n, k/n)/(n * n)
end (k \text{ loop})
```

- 2. Consider using the iterative refinement procedure $\vec{x}^{(k+1)} = \vec{x}^{(k)} + B(\vec{b} A\vec{x}^{(k)})$ for $k \geq 0$, to solve $A\vec{x} = \vec{b}$ for $\vec{x} \in \mathbb{R}^n$ and $\vec{b} \in \mathbb{R}^n$ with an approximate solution $\vec{x}^{(0)} = B\vec{b}$, where B is an approximate inverse of A. Let ||I BA|| < 1.
 - (a) Show that the iterative refinement procedure described above produces the sequence of vectors, $\vec{x}^{(m)} = \sum_{k=0}^{m} (I BA)^k B \vec{b}$ for $m \ge 0$.
 - (b) Show that $\vec{x}^{(m)}$ converges to \vec{x} as $m \to \infty$.
- 3. Consider the initial-value system $\frac{d\vec{y}}{dt} = (I Bt)^{-1}\vec{y}$ for $0 \le t \le 1$ where $\vec{y}(t) \in \mathbb{R}^n$, $\vec{y}(0) = \vec{y}_0$, and B is an $n \times n$ matrix with $||B||_{\infty} \le \frac{1}{2}$. Euler's method for approximating $\vec{y}(t)$ has the form $\vec{y}_{i+1} = \vec{y}_i + h(I Bt_i)^{-1}\vec{y}_i = (I + h(I Bt_i)^{-1})\vec{y}_i$ for $i = 0, 1, \dots, N 1$, where $t_i = ih$ and $h = \frac{1}{N}$. (Note that $||Bt_i||_{\infty} \le \frac{1}{2}$ for all i.)
 - (a) Prove that $\|\vec{y}_{i+1}\|_{\infty} \le (1+2h)\|\vec{y}_i\|_{\infty}$ for $i = 0, 1, \dots, N-1$.
 - (b) Show that $\|\vec{y}_N\|_{\infty} \leq e^2 \|\vec{y}_0\|_{\infty}$ for any value of $N \geq 1$.
- 4. Assume f(x) to be a real function. Let x_0, x_1 be two distinct points.
 - (a) Prove that there is a unique polynomial p(x) of degree 3 such that $p(x_j) = f(x_j)$ and $p'(x_j) = f'(x_j)$ for j = 0, 1.
 - (b) Determine explicitly the polynomial interpolant described in part (a). Also give a formula for the error.
- 5. Suppose that f(x) satisfies a Lipschitz condition $|f(x) f(y)| \le L|x y|$ for all $x, y \in [0, 1]$. Let $\Psi(x)$ be a piecewise constant approximation to f(x) on [0, 1] such that $\Psi(x) = f(x_i)$ for $x_i \le x < x_{i+1}$ for i = 0, 1, ..., N-1 with $x_i = ih$ and $h = \frac{1}{N}$. Prove that $\max_{0 \le x \le 1} |\Psi(x) f(x)| \le ch$ for some constant c > 0.

- 6. Consider the equation $x^3 x 1 = 0$ which has a root ξ between 1 and 2.
 - (a) Determine a suitable iteration function T(x) such that ξ is a solution of x = T(x) and T(x) is a contraction over [1,2].
 - (b) Find k such that the n^{th} iterate x_n generated by the equation $x_n = T(x_{n-1})$ for $n \ge 1$, satisfies $|x_n \xi| \le k^n |x_0 \xi|$.
- 7. Let $\{g_1, g_2, \ldots, g_n\}$ be an orthonormal system in an inner-product space E with the associated inner-product (\cdot, \cdot) . Let G be the subspace generated by g_1, g_2, \ldots, g_n . Let $f \in E$ and $g^* \in G$ satisfy $f g^* \perp G$.
 - (a) Show that g^* is the best approximation to f in G. That is, show that $||f g^*|| \le ||f g||$ for any $g \in G$. Also show that $g^* = \sum_{i=1}^n (f, g_i) g_i$.
 - (b) Let $||f|| = \sqrt{(f, f)}$. Show that $\sum_{i=1}^{n} |(f, g_i)|^2 \le ||f||^2$.
- 8. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of the $n \times n$ matrix A. Let $D = P^{-1}AP$ be a diagonal matrix for some nonsingular $n \times n$ matrix P.
 - (a) Describe Gershgorin's theorem for localizing eigenvalues.
 - (b) For any $n \times n$ matrix B, show that the eigenvalues of (A + B) are the same as the eigenvalues of $(D + P^{-1}BP)$.
 - (c) Using parts (a) and (b), show that the eigenvalues of A + B lie in the union of the disks $|\lambda \lambda_i| \leq \kappa_{\infty}(P)||B||_{\infty}$, where $\kappa_{\infty}(P) = ||P||_{\infty}||P^{-1}||_{\infty}$ is the infinity-norm condition number of the matrix P.
- 9. Let $\vec{p} = [1, 2, ..., n]^T \in \mathbb{R}^n$ and let A be the $n \times n$ matrix $A = \vec{p}\vec{p}^T$. Consider the power method of the form $\vec{x}_{i+1} = A\vec{x}_i/\|A\vec{x}_i\|_2$ for i = 0, 1, 2, ... with $\vec{x}_0 = [1, 1, ..., 1]^T$. Suppose $A\vec{x}_0 \neq \vec{0}$. Show that the sequence $\{\vec{x}_i\}_{i=0}^{\infty}$ converges and determine explicitly the vector $\vec{v} \in \mathbb{R}^n$ to which the sequence converges.
- 10. Given the initial value problem $\frac{dy}{dt} = f(t,y)$, $y(a) = \eta$ for the function y(t) over the interval $a \le t \le b$. Consider the general two-step method on the discrete point set defined by $t_n = a + nh$ for $n = 0, \ldots, m$ with h = (b a)/m. If we write $y_n = y(t_n)$ and $f_n = f(t_n, y_n)$ the general two-step method becomes

$$\sum_{j=0}^{2} \alpha_j y_{n+j} = h \sum_{j=0}^{2} \beta_j f_{n+j} .$$

Assume that $\alpha_2 = 1$ and $\alpha_0 = c$, where c is a parameter.

- (a) Show that, by selecting $\alpha_1, \beta_0, \beta_1$ and β_2 appropriately, the method is third order for $c \neq -1$.
- (b) Show that if c = -1, the order of the method is at most 4.
- (c) Show that if c = -5, the method can be third order and explicit.