Numerical Analysis Preliminary Examination, August 2006

Department of Mathematics and Statistics

Do nine of the following ten problems. Clearly indicate which nine are to be graded. Calculators are not allowed.

- **1.** Let \vec{x} , with $\|\vec{x}\|_2 = 1$, be an eigenvector of a real symmetric $n \times n$ matrix A, that is, $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$ where $\vec{x}^T\vec{x} = 1$. Let U be an $n \times (n-1)$ matrix such that the $n \times n$ matrix $B = (\vec{x}, U)$ is orthogonal, i.e., $B^TB = (\vec{x}, U)^T(\vec{x}, U) = \begin{bmatrix} \vec{x}^T\vec{x} & \vec{x}^TU \\ U^T\vec{x} & U^TU \end{bmatrix} = I$.
- (a) Prove that $B^TAB = \begin{bmatrix} \lambda & \vec{c}^T \\ \vec{0} & C \end{bmatrix}$ where \vec{c} and $\vec{0}$ are vectors of length n-1 and C is an $(n-1)\times(n-1)$ matrix.
- (b) Prove that C has the same eigenvalues as A except for λ .
- **2.** Prove that $\left| \sin x \frac{6x}{6+x^2} \right| \le \frac{x^5}{24}$ for $0 \le x \le 2$.
- **3.** Let $g: \mathbb{R}^3 \to \mathbb{R}$ where $g \in C^2(\mathbb{R}^3)$. Assume that g achieves its minimum at $\vec{x}^* \in D \subset \mathbb{R}^3$ where $D = [-1, 1] \times [-1, 1] \times [-1, 1]$. Let $\vec{x}_0 \in D$ be an initial guess to \vec{x}^* . In the method of steepest descent, let $\vec{x}_1 \in D$ be the next approximation to \vec{x}^* . Carefully explain how \vec{x}_1 is calculated.
- **4.** Let $f \in C[0,1]$ but $f \notin C^1[0,1]$. Consider $E_n = \int_0^1 f(x) dx \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$. Prove that given $\epsilon > 0$, there is an N > 0 such that $|E_n| < \epsilon$ when n > N.
- **5.** Let $\vec{x} \in \mathbb{R}^n$ with $\vec{x} = [x_1, x_2, x_3, \dots, x_n]^T$ and $x_1 \neq 0$. Let $\vec{u} = \vec{x} + \sigma \vec{e}_1$ where $\sigma = \text{sign}(x_1) \|\vec{x}\|_2$ and let $\theta = \frac{1}{2} \|\vec{u}\|_2^2$. Finally, let $U = I \vec{u}\vec{u}^T/\theta$. Prove that $U^2 = I$ and that $U\vec{x} = -\sigma \vec{e}_1$.
- **6.** Let A be a 4×4 matrix with eigenvalues 1, 3, 5, 6 and corresponding eigenvectors $[1,1,1,-1]^T, [1,1,1,1]^T, [1,1,-1,1]^T$, and $[1,-1,1,1]^T$, respectively. Consider the iteration $\vec{x}^{(k+1)} = A^{-1}\vec{x}^{(k)}$ for $k = 0,1,2,\ldots$ where $\vec{x}^{(0)} \in \mathbb{R}^4$ is randomly chosen with $\vec{x}^{(0)} \neq \vec{0}$. Prove that $\{\vec{x}^{(k)}\}_{k=0}^{\infty}$ converges to an $\vec{x}^* \in \mathbb{R}^4$ and find explicitly $\vec{x}^*/\|\vec{x}^*\|_2$.

7. Let $F(\vec{x}) = [f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_n(x_1, x_2, \dots, x_n)]^T$. Broyden's iterative method of finding $\vec{x} \in \mathbb{R}^n$ so that $F(\vec{x}) = \vec{0}$ has the form for $k = 0, 1, 2, \dots$:

$$\begin{cases} \vec{x}^{(k+1)} = \vec{x}^{(k)} - B_k^{-1} F(\vec{x}^{(k)}) \\ \vec{y}^{(k)} = F(\vec{x}^{(k+1)}) - F(\vec{x}^{(k)}), \quad \vec{s}^{(k)} = \vec{x}^{(k+1)} - \vec{x}^{(k)} \\ B_{k+1} = B_k + \frac{(\vec{y}^{(k)} - B_k \vec{s}^{(k)})(\vec{s}^{(k)})^T}{(\vec{s}^{(k)})^T \vec{s}^{(k)}}. \end{cases}$$

For n = 1, prove that Broyden's method reduces to the secant method.

- **8.** Let A be an $n \times n$ matrix with $a_{ij} \leq 0$ if $i \neq j$ and $a_{ii} > 0$ for $1 \leq i, j \leq n$. Let $B = D^{-1}(D-A)$ where D is the diagonal matrix with elements $d_{ij} = 0$ if $i \neq j$ and $d_{ii} = a_{ii}$ for $1 \leq i, j \leq n$. Assume that the spectral radius $\rho(B) < 1$.
- (a) Prove that A is nonsingular.
- (b) Prove that $A^{-1} \ge 0$, that is, all the entries of A^{-1} are nonnegative.
- (c) Let $\vec{c} \in \mathbb{R}^n$ and define an iteration by $\vec{x}^{(k+1)} = B\vec{x}^{(k)} + \vec{c}$ for $k = 0, 1, 2, \ldots$ with $\vec{x}^{(0)} = \vec{0}$. Prove that $\{\vec{x}^{(k)}\}_{k=1}^{\infty}$ converges to a vector $\vec{x} \in \mathbb{R}^n$ and find \vec{x} in terms of A, D, and \vec{c} .
- **9.** Let $f \in C[0,1]$. Consider the problem of finding the least squares fit to f(x) by a polynomial of degree less than or equal to n. That is, find $p^*(x)$ such that

$$\int_0^1 (f(x) - p^*(x))^2 dx \le \int_0^1 (f(x) - p(x))^2 dx$$

for all polynomials p of degree less than or equal to n.

- (a) If $p^*(x) = a_0 + a_1x + \cdots + a_nx^n$, show how to determine the values of the coefficients a_0, a_1, \ldots, a_n by solving a system of linear equations.
- (b) The Legendre polynomials, $L_i(x)$, i = 0, 1, ..., n, are orthogonal on [0, 1] with respect to the weight function w(x) = 1. Show how to express $p^*(x)$ in terms of these polynomials.
- 10. Assume that the initial-value problem

$$\begin{cases} y'(t) = f(t, y) \\ y(a) = A \end{cases}$$

has a unique solution y(t) on the interval [a, b]. Consider approximating this solution by the one-step method

$$\begin{cases} y_{k+1} = y_k + h\phi(t_k, y_k) \\ y_0 = \hat{A} \end{cases}$$

for $k = 0, 1, \ldots, N-1$ where h = (b-a)/N and $t_k = a + kh$. Assume that $|y(t+h) - y(t) - h\phi(t, y(t))| \le ch^{p+1}$ for all $t \in [a, b]$ and that $|\phi(t, u) - \phi(t, v)| \le L|u - v|$ for all $t \in [a, b]$. Prove that

$$|y(t_m) - y_m| \le |A - \hat{A}|e^{L(t_m - a)} + \frac{ch^p}{L}(e^{L(t_m - a)} - 1)$$

for any $0 \le m \le N$.