Numerical Analysis Preliminary Examination, August 2008

Department of Mathematics and Statistics

Do nine of the following ten problems. Clearly indicate which nine are to be graded. Calculators are not allowed.

- 1. Let A be the nonsingular 3×3 matrix $A = \begin{pmatrix} 2 & 4 & 3 \\ 2 & 1 & 5 \\ 1 & 3 & 5 \end{pmatrix}$.
- (a) Consider the QR-factorization of A. Describe special properties of matrices Q and R.
- (b) Explain how two Householder matrices H_1 and H_2 can be used to form the QRfactorization of A, i.e., A = QR. Also, express Q in terms of H_1 and H_2 and R in terms of H_1 , H_2 , and A.
- (c) Suppose that $H_1A = \begin{pmatrix} -3 & 1 & -7 \\ 0 & 3 & 1 \\ 0 & 4 & 3 \end{pmatrix}$. Find H_2 and find matrix R. (Given $\vec{x} \in \mathbb{R}^n$, recall that if $\sigma = \operatorname{sign}(x_1) ||\vec{x}||_2$, $\vec{u} = \vec{x} + \sigma \vec{e}_1$, $\theta = \frac{1}{2} ||\vec{u}||_2^2$, and $H = I \vec{u}\vec{u}^T/\theta$,

then $H\vec{x} = -\sigma \vec{e}_1$.)

- 2. Consider the linear system $\begin{cases} 4x_1 x_2 &= 2 \\ -x_1 + 4x_2 x_3 &= 6 \\ -x_2 + 4x_3 &= 2. \end{cases}$
- (a) Compute the Jacobi iteration matrix, J, for this system.
- (b) Determine the spectral radius, $\rho(J)$, of matrix J.
- (c) Determine or deduce that the spectral radius of the Gauss-Seidel matrix, L_1 , satisfies $\rho(L_1) < \rho(J).$
- 3. Let A be a nonsingular $n \times n$ matrix and suppose that C is an $n \times n$ matrix with $||I - AC|| \le q < 1$. Let $X_{j+1} = X_j B + C$ for $j = 0, 1, 2, \ldots$ where B = I - AC. Prove that $||X_j - A^{-1}|| \le \frac{q^j}{1 - q} ||X_1 - X_0||.$
- 4. Let $z = f(x,y) = 15x^3/2 + xy 2x + 4y + y^2/2$ describe a surface where $(x,y) \in D =$ $[0,\infty)\times(-\infty,\infty)$. The minimum point of f(x,y) in D is (0.5391,-4.5391).
- (a) Describe the method of steepest descent for finding the minimum point.
- (b) Let $(x_0, y_0) = (0, 0)$ be the initial point in the method of steepest descent. Apply one step of the method and calculate the point (x_1, y_1) .
- **5.** Let $x_i = 1/(i+1)$ for i = 0, 1, ..., n. Suppose that $f \in C^{\infty}[0, 1]$ and $||f^{(m)}||_{\infty} \leq 5^m$ for $m=0,1,2,\ldots$ Let $p_n(x)$ be the unique polynomial of degree less than or equal to n such that $p_n(x_i) = f(x_i)$ for i = 0, 1, ..., n. Given $\epsilon > 0$, prove that there is an integer N such that $||p_n - f||_{\infty} < \epsilon$ when $n \ge N$.

6. Consider the numerical solution of the initial-value problem $y'(t) = f(t, y(t)), y(0) = y_0$. (a) Find the interval of absolute stability of the Runge-Kutta method

$$y_{k+1} = y_k + \frac{h}{4}k_1 + \frac{3h}{4}k_2, \quad k_1 = f(t_k, y_k), \quad k_2 = f(t_{k+1}, y_k + hk_1).$$

- (b) Suppose that the method is applied to $\vec{y}' = A\vec{y}$ where A is an $n \times n$ negative definite Hermitian matrix with spectral radius $\rho(A) = 100$. Determine the step width h that will guarantee absolute stability for this problem.
- 7. Let $f \in C[1,2]$ and let P^n be the set of polynomials of degree less than or equal to n. Define the inner product on C[1,2] as $(f,g) = \int_1^2 x^2 f(x)g(x) dx$, with norm $||f|| = (f,f)^{1/2}$. Let $\{\phi_k(x)\}_{k=0}^{\infty}$ be orthonormal polynomials with respect to this inner product. The least squares approximation $p_n \in P^n$ to $f \in C[1,2]$ is given by $p_n(x) = \sum_{k=0}^n (f,\phi_k)\phi_k(x)$.
- (a) Prove that $(f p_n, q_n) = 0$ for any $q_n \in P^n$.
- (b) Prove that $||p_n f||^2 < ||q_n f||^2$ for any $q_n \in P^n$.
- (c) Prove that given $\epsilon > 0$, there is an N such that $||p_n f|| < \epsilon$ when $n \ge N$. (d) Suppose that $(f, \phi_k) \le 1/k^2$. Prove that $||p_n f||^2 < c/n^2$ where $c = \sum_{k=1}^{\infty} 1/k^2 < \infty$.
- 8. Consider the iteration $\vec{x}^{(k+1)} = G(\vec{x}^{(k)}), \vec{x}^{(0)} = [0,0]^T$, where

$$G(\vec{x}) = \begin{pmatrix} \frac{1}{2}\cos(x_1) - \frac{1}{4}\sin(x_2) \\ \frac{1}{4}\cos(x_1) + \frac{1}{2}\sin(x_2) \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

- (a) Show that $||G(\vec{x}) G(\vec{y})||_{\infty} \le \alpha ||\vec{x} \vec{y}||_{\infty}$ where $\alpha = 3/4$.
- (b) Prove that $\{\vec{x}^{(k)}\}_{k=0}^{\infty}$ converges to the unique vector $\vec{x}^* \in \mathbb{R}^2$ such that $\vec{x}^* = G(\vec{x}^*)$.
- 9. Consider the linear system $A\vec{x} = \vec{b}$ where A is nonsingular. Suppose that we compute \vec{y} that solves $A\vec{y} = \vec{b} + \vec{p}$ with $||\vec{p}||$ small.
- (a) Obtain an upper bound for $||\vec{x} \vec{y}|| / ||\vec{x}||$ in terms of $||\vec{p}|| / ||\vec{b}||$ and $K(A) = ||A|| ||A^{-1}||$.
- (b) Obtain a lower bound for $||\vec{x} \vec{y}|| / ||\vec{x}||$ in terms of $||\vec{p}|| / ||\vec{b}||$ and $K(A) = ||A|| ||A^{-1}||$.
- **10.** Let $F(h) = (f(x_0 + h) 2f(x_0) + f(x_0 h))/h^2$ be an approximation to $f''(x_0)$. Let $e(h) = f''(x_0) - F(h)$ be the error in the approximation. Assume that $f \in C^8[a,b]$ and that $x_0 - h, x_0, x_0 + h \in [a, b]$. Prove that the error, e(h), has the form $e(h) = c_1 h^2 + c_2 h^4 + O(h^6)$ where c_1 and c_2 are independent of h.