FALL 2003 ODE/PDE PRELIMINARY EXAM

DO 3 PROBLEMS FROM PART I AND 3 PROBLEMS FROM PART II. YOU MUST CLEARLY INDICATE WHICH 6 PROBLEMS ARE TO BE GRADED.

PART I: ODE

1. Consider the linear system of ordinary differential equations of the form

$$\frac{dx}{dt}(t) = A(t)x(t) \quad x(t) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{n+m}, \quad \text{where} \quad A = \begin{bmatrix} A_{11} & A_{12}(t) \\ 0 & A_{22} \end{bmatrix}$$
 (*1)

and A_{11} , A_{22} are $n \times n$ matrices (constant coefficient) and $A_{12}(\cdot)$ is an $n \times n$ matrix whose entries are continuous functions of t.

- (a) Write down the general solution of $(*_1)$ in terms of $e^{A_{11}t}$, $e^{A_{22}t}$, $A_{12}(\cdot)$ and arbitrary constant vectors.
- (b) Suppose there are constants c > 0, $\lambda > 0$ such that $||e^{A_{11}t}|| \le ce^{-\lambda t}$, $||e^{A_{22}t}|| \le ce^{-\lambda t}$ and $||A_{12}(t)|| < c$ for all $t \ge \tau \ge 0$. Show that $x(t) \xrightarrow{t \to \infty} 0$
- 2. Consider the linear system, $\dot{x}(t) = Ax(t)$, where $x(t) \in \mathbb{R}^n$, and A is an $n \times n$ symmetric matrix. Let m < n denote a fixed integer such

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m > \lambda_{m+1} \geq \cdots \geq \lambda_n$$

denote the eigenvalues of A. Let V denote the sum of the eigenspaces of $\{\lambda_i\}_{i=1}^m$.

Let $\pi: \mathbb{R}^n \to V$ denote the orthogonal projection of \mathbb{R}^n onto V. Finally let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^n .

- (a) Show that $\pi e^{At} = e^{At}\pi$ for all $t \in \mathbb{R}$.
- (b) Show that $||e^{At}x e^{At}\pi(x)|| \le e^{\lambda_{m+1}t}||x \pi(x)||$ for all $t \in \mathbb{R}$ and $x \in \mathbb{R}^n$.
- (c) Consider the case $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Show that

$$||e^{At}x - e^tx_1e_1|| \le e^{-t}\sqrt{x_2^2 + x_3^2}$$
 for all $t \in \mathbb{R}$.

- 3. Consider the boundary value problem y''(x) = f(x) $y(0) = \alpha$, $y(1) = \beta$ (**1) where f is a continuous function on [0, 1].
 - (a) Find a function v(x) so that the $\widetilde{y}(x) = y(x) v(x)$ satisfies the transformed homogeneous boundary value problem $\widetilde{y}''(x) = f(x)$ $\widetilde{y}(0) = 0$, $\widetilde{y}(1) = 0$ (**₂)
 - (b) Find the Green's function for the problem $(***_2)$ and use it to provide a formula for the solution to the problem $(**_1)$.

- 4. Consider $\dot{x}(t) = f(x(t))$, where $x(t) \in \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}^n$ is C^2 and satisfies f(0) = 0, and $\|\nabla f(x)\| < L$ for all $x \in \mathbb{R}^n$ and some L > 0. Let $t \mapsto x(t) : [0, a) \to \mathbb{R}^n$ be a solution.
 - (a) Show that $||x(t)|| \le e^{Lt} ||x(0)||$ for all $t \in [0, a)$.
 - (b) Hence argue that the solution exists for all t>0. HINT: You may use Gronwall's inequality, If $\phi:[0,a)\to[0,\infty)$ such that $\phi(t)\leq K+\int_0^t L\phi(s)\,ds\ \forall\ t\in[0,a),$ then $\phi(t)\leq Ke^{Lt}.$ Note that this inequality is valid only when K,L and ϕ are nonnegative.

PART II: PDE

- 1. Solve the first order linear initial value problem $u_x + u_t + tu = 0$, $x \in \mathbb{R}$, t > 0 satisfying $u(x,0) = x^2$, $x \in \mathbb{R}$.
- 2. Given that u(x) is harmonic on

$$\left\{x : \frac{1}{2} \le ||x|| \le 1\right\} \subset \mathbb{R}^2.$$

Let

$$M_1 = \max\{u(x) : ||x|| = 1\}$$
 and $M_2 = \max\{u(x) : ||x|| = \frac{1}{2}\}$.

Assume that $M_2 < M_1$ and $u(1,0) = M_1$. Show that

$$\left. \frac{\partial}{\partial x_1} u(x) \right|_{x=(1,0)} \ge \frac{(M_1 - M_2)}{\ln(2)}.$$

(HINT: Consider $v_{\epsilon}(x) = u(x) - \epsilon \ln(||x||)$ and use the maximum principle.)

- 3. (a) Write down the Poisson formula for a harmonic function u on $B(0,R) \subset \mathbb{R}^n$.
 - (b) Suppose u is harmonic on $\overline{B(0,R)}$ and $u \ge 0$. Use part (a) to show that

$$\frac{R^{n-2}(R-\|\xi\|)}{(R+\|\xi\|)^{n-1}}u(0) \le u(\xi) \le \frac{R^{n-2}(R+\|\xi\|)}{(R-\|\xi\|)^{n-1}}u(0), \quad \text{for all } \|\xi\| < R.$$

4. Consider the equation on \mathbb{R}^2 ,

$$x^2 u_{xx} + 2x u_{xy} + u_{yy} = u_y. (*_2)$$

- (a) Show that the equation is parabolic.
- (b) Find the characteristics, and show that $\alpha(x,y) = xe^{-y}$ and $\beta(x,y) = y$, is a canonical transformation.
- (c) Show that, in the transformed coordinates, the equation becomes $u_{\beta\beta} u_{\beta} = 0$ and hence find the general solution of $(*_2)$.
- 5. Consider the initial value problem for the wave equation in \mathbb{R}^3

$$u_{tt} = \Delta_x u, \ x \in \mathbb{R}^3, \ t \ge 0,$$

$$u(x,0) = g(x), \quad u_t(x,0) = h(x), \quad \forall \ x \in \mathbb{R}^3.$$

- (a) Write down the Kirchoff's formula for the solution.
- (b) Solve the equation explicitly when $g(x) = ||x||^2$ and $h(x) = x_1x_2$.