## FALL 2005 ODE/PDE PRELIMINARY EXAM

Do 3 problems from Part I and 3 problems from Part II. You must clearly indicate which 6 problems are to be graded.

## PART I: ODE

1. Given 
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- a) Discuss stability for the system  $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$ .
- b) Find a fundamental matrix for the system in a).

c) Solve the problem 
$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} + \mathbf{b}(t)$$
 with  $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$  and  $\mathbf{b}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ 1 \end{bmatrix}$ .

2. For the system of equations 
$$\begin{cases} x' = 2x - xy \\ y' = -y + xy \end{cases}$$

- a) Find all equilibria.
- b) Prove that if x(0) > 0 and y(0) > 0 then x(t) > 0 and y(t) > 0 for all  $t \ge 0$ .
- c) Show that all solutions with x(0)>0 and y(0)>0 are bounded and, in fact, periodic when  $(x(0),y(0))\neq (1,2)$  (Hint: Use  $E(x,y)=x-\ln(x)+y-2\ln(y)$ ).
- d) Determine stability properties of the equilibria in part a).
- 3. Suppose that  $\Phi(t)$  is a fundamental matrix for a linear system

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}\boldsymbol{x}.$$

Suppose there exists M>0 such that  $|\Phi(t)|\leq M$  for all  $t\geq 0$ . Show that  $\boldsymbol{x}=0$  is stable.

4. Determine whether each of the following has a limit cycle or not:

a) 
$$\begin{cases} x' = x^2 + 2y^2 \\ y' = x - 2 \end{cases}$$
 b) 
$$\begin{cases} x' = -12xy + x^3 \\ y' = 4y \end{cases}$$

## PART II: PDE

- 1. Consider the first order partial differential equation  $u_t e^{-u}u_x = 0$  (\*)
  - a) Solve the characteristic ODEs for (\*).
  - b) Find an explicit nonconstant solution of (\*) in the form u(x,t) = f(x/t). (Note: The solution you find may only be defined on a subdomain in the x, t plane.)
- 2. a) Find the Green's function for the boundary value problem (BVP)

$$y'' = 0$$
,  $y(0) = 0$ ,  $y(1) - 2y'(1) = 0$ .

- b) Use your answer in part a) to solve the BVP y'' = x, y(0) = 0, y(1) 2y'(1) = 0.
- 3. Use Duhamel's principle to solve the initial value problem for the non-homogeneous wave equation

$$w_{tt} = w_{xx} + \sin(x - t), \quad x \in \mathbb{R}, \quad t > 0,$$

$$w(x, 0) = 0, \quad x \in \mathbb{R},$$

$$w_t(x, 0) = 0, \quad x \in \mathbb{R}.$$

4. Consider the following modified heat equation

$$u_t(x,t) = u_{xx}(x,t) - u(x,t), \quad 0 < x < 1, \quad t > 0,$$

$$u(x,0) = f(x), \quad 0 < x < 1,$$

$$u(0,t) = 1, \quad u(1,t) = 0, \quad 0 < t < T.$$

$$(1)$$

- (a) Find the steady state solution  $u(x,t) = u_{ss}(x)$ .
- (b) Use an energy argument on the function

$$w(x,t) = u(x,t) - u_{ss}(x)$$

to describe the behavior of u as  $t \to \infty$ .