SPRING 2005 ODE/PDE PRELIMINARY EXAM

DO 3 PROBLEMS FROM PART I AND 3 PROBLEMS FROM PART II. YOU MUST CLEARLY INDICATE WHICH 6 PROBLEMS ARE TO BE GRADED.

PART I: ODE

1. Let
$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- a) Find a fundamental matrix for $\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}$.
- b) Discuss the stability of equilibrium.
- c) Use the variation of parameters formula and your answer in part a) to solve the initial value problem

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{A}x + \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \boldsymbol{x}(0) = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

2. (a) Show that there do NOT exist functions p(x), q(x) continuous in a neighborhood of x=0 such that the ODE

$$y'' + p(x)y' + q(x)y = 0$$

has solutions $y_1(x) = x$ and $y_2(x) = \sin(x)$.

(b) State and prove Abel's theorem on the Wronskian of two solutions to the equation

$$y'' + p(x)y' + q(x)y = 0.$$

(Recall Abel's theorem gives an explicit formula for the Wronskian.)

- 3. (a) Give a precise definition of stability (in the sense of Lyapunov) for a solution of the system of ODEs x' = f(x,t), $x \in \mathbb{R}^n$.
 - (b) If k > 0 is a constant, is x = 0 stable or unstable for $x' = xk^2 x^3$?
 - (c) In the system $\begin{cases} x' = xk^2 x^3 \\ k' = 0 \end{cases}$ in which k is now a variable, is x = 0, k = 0 a stable equilibrium? Explain your reasoning carefully.
- 4. Consider the ODE, $\dot{x} = f(x,t)$, $x(t) \in \mathbb{R}$, $t \geq 0$. It is given that $f \in C^1$, f(0,t) = 0 and $f(\cdot,t)$ is periodic with respect to t with period T, i.e., f(x,t+T) = f(x,t) for all x,t. Let $(t,x_0) \mapsto x(t;x_0)$ denote the solution at time t with initial state x_0 at t=0. Suppose there exists $0 < \alpha < 1$ such that

$$|x(T, x_0)| \le \alpha |x_0|$$
 for $|x_0| \le 1$

(In particular, $x(t, x_0)$ exists for all $0 \le t \le T$ and $|x_0| \le 1$.) Using Gronwall's inequality, or, otherwise show there exists C > 0, $\lambda > 0$ such that

$$|x(t;x_0)| \le Ce^{-\lambda t}|x_0|$$
 for all $x_0 \in [-1,1]$ and all $t \ge 0$.

PART II: PDE

1. Consider the quasilinear differential equation for $x, y \in \mathbb{R}$

$$xu_x(x,y) + yu_y(x,y) = u^2,$$

- a) Find the characteristics of this equation as curves in x and y.
- b) Find the form of the general solution to this equation.
- c) Find the solution to the initial value problem $u(1,y) = y^2, y \in \mathbb{R}$.
- d) Is the solution everywhere defined?
- 2. Find the Green's function for the problem

$$y'' - 3y' + 2y = f(x), \quad y(0) = 0, \quad y(1) = 0 \tag{*}$$

where f is a given continuous function on [0,1]. Use the Green's function to express the solution to (*).

3. Use Duhamel's principle to find an explicit solution of

$$u_{tt}(x,t) = u_{xx}(x,t) + e^x, \quad x \in \mathbb{R}, \quad t > 0,$$

 $u(x,0) = 0, \quad u_t(x,0) = 0.$

4. a) Show that the characteristics of the wave equation $\frac{1}{c^2}u_{tt} - u_{xx} = 0$ are

$$\xi = x + ct$$
 and $\eta = x - ct$.

- b) Use the characteristics to transform the equation to a canonical form and thereby find the general form of the solution. Use this to express the solution to the initial value problem: u(x,0) = f(x), $u_t(x,0) = g(x)$.
- c) For the multidimensional wave equation $\frac{1}{c^2}u_{tt} \Delta u = 0$ assume radial symmetry. Find the general solution in \mathbb{R}^3 . (Hint: consider the transformation w = ru where r is the radial coordinate.)
- 5. For any positive integer n consider the exterior boundary value problem:

$$\Delta u = 0 \text{ in } \Omega = \{x \in \mathbb{R}^n : ||x|| > 1\}$$

 $u(x) = 1, ||x|| = 1,$

- a) Show that this problem has infinitely many solutions.
- b) Show that if for n > 2, $u(x) \to 0$ as $||x|| \to \infty$, then the problem has a unique solution.