
Spring 2006 ODE/PDE Preliminary Exam 
 
Do 3 problems from Part I and  3 problems from Part II. You must clearly indicate which 
6 problem are to be graded. 
 
Part I.   
 
Problem 1.  Let ( )t! be a real-valued continuous function on [0, )! . Consider the 
differential equation, 
 

2( ) cos ( ) ) ( ) 0, 0y t t y t y t t!! !" +#( = $ . 
 

Using Abel’s formula or otherwise show that there exists an initial condition 
( (0), (0))y y! such that the corresponding solution is unbounded. 
 
Problem 2. Consider the system of ODE, 
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Show that the origin (0,0,0)  is a globally asymptotically stable equilibrium point. 
 
Problem 3. Using Sturm’s Theorem 
 

A) Show that if a solution of the equation ( )cos 0y x y!!+ = , 

has at least two zeros in the interval / 2,3! !( /2) ,  then ( ) 0y x ! . 

B) Suppose   ( )k x x!  for all {{{x in R}}}.  Show that distances between 

consequent zeros of every nontrivial solution of the equation  + ( ) 0y k x y!! =   
become arbitrarily small as  .x!"  

 
Problem 4. Construct a system of ODE, for which the two functions,  
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will form a fundamental system of solutions. 



 
 
 
 
 
Part II: PDE 
 
Problem 1. 
 
Using the Maximum principle show that if ( )u x is a solution of the Dirichlet problem  
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Problem 2.   

Let 
1 ,  when 1
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. Sketch profiles of the solutions of two Cauchy 

problems at time 3/ 4t = . 
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Explain major differences in the features of these two solutions. 
 
 
 
 
 
 
 
 
 



 
Problem 3.  Let 2

 be the domain in D R shown in the figure 1 
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Figure 1:  D is the  shaded domain as shown above between two rectangles.  Boundary conditions will 
be specified only on the darkened part Γ of the boundary, i.e.  Γ consists of lines 1 though 6. 

Let 1 2
( , ), ( , )u x t and u x t be two solutions of the problem 
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Let ,    and  f g  are continuous functions. Prove that 1 2
( , ) ( , )u x t u x t= , at each 

point of the domain D . 
 
Problem 4. Derive  an explicit formula for a function ( , )u x t  which solves the initial 
value problem 
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Here: n
b R! is a constant vector,

0
 

m

c c t= , 
0

 ,  c m are constants, and  ,  f g are 
continuous functions. 


