2013 August ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which 3 are to be graded. Problem 1, 2, and 3 will be graded if no indication is given. Strive for clear and detailed solutions.

- 1. Let A(t) be an $n \times n$ matrix whose entries are continuous functions of t.
 - a) Prove that the solution space of the system $\dot{x} = A(t)x$, $x \in \mathbb{R}^n$, is an *n*-dimensional linear space.
 - b) Prove that for time-independent A, the solution for the initial value problem $\dot{x} = Ax + f(t)$, $x(0) = x_0$ is

$$x(t) = e^{At} \left(x_0 + \int_0^t e^{-A\tau} f(\tau) \ d\tau \right),$$

where e^{At} is defined by

$$e^{At} = I + tA + \frac{t^2}{2!}A^2 + \frac{t^3}{3!}A^3 + \cdots$$

- 2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a local Lipschitz function, $\phi(t)$ be the solution of $\dot{x} = f(x)$, $x(0) = x_0$, and (α, β) be the maximal interval of existence of $\phi(t)$. Prove that if the set $\{\phi(t): t \in [0, \beta)\}$ is bounded, then $\beta = \infty$.
- 3. Determine the stability of the origin for the system

$$\dot{x}_1 = -x_2^2
\dot{x}_2 = -x_2 + x_1^2 + x_1 x_2$$

by using the center manifold theorem.

4. Consider the system

$$\dot{x}_1 = x_1 - x_2 - x_1^3,
\dot{x}_2 = x_1 + x_2 - x_2^3.$$

Accept the fact without proof that the origin is the only equilibrium point of the system. Prove that the system has a periodic orbit in the annular region

$$A = \{x \in \mathbb{R}^2 : 1 \le x_1^2 + x_2^2 \le 2\}.$$

State any theorem that you invoke.

(Hint:
$$x_1^2 + x_2^2 - x_1^4 - x_2^4 = (x_1^2 + x_2^2) - (x_1^2 + x_2^2)^2 + 2x_1^2x_2^2 = r^2 - r^4 + \frac{r^4}{2}\sin^2(2\theta)$$
 where $x_1 = r\cos\theta$, $x_2 = r\sin\theta$.)

August 2013. PRELIMINARY EXAMINATION

Partial Differential Equations

Do three out of four	problems below	Write in	the following	boxes the th	ree problems
that are to be graded:					

Failing to clearly indicate three problems will result in Problems 1, 2 and 3 being graded.

1. Let *c* be a constant and consider the equation

$$\Delta u - 2cu_{x_1} = -c^2u.$$

State and prove the Mean Value Formula for a solution of the above equation.

Hint: you may use substitution $v(x) = f(x_1)u$ for an appropriate function $f(x_1)$ to show that $\Delta v = 0$.

2. Let $U \subset \mathbb{R}^2$ be an unbounded domain (open, connected set) in $(0, \infty) \times (0, 1)$. Suppose $u(x_1, x_2)$ is a function in $C^2(U) \cap C(\bar{U})$ that satisfies

$$\begin{cases} \Delta u = 0 & \text{in } U, \\ |u| \le f(x_1, x_2) & \text{on } \partial U, \end{cases}$$

Assume that $|u(x_1, x_2)| \le C$ for all $(x_1, x_2) \in \bar{U}$ and $f(x_1, x_2) \le N$ for all $(x_1, x_2) \in \partial U$, where C and N are some constants.

Prove that $|u(x_1, x_2)| \le N$ for all $(x_1, x_2) \in U$.

3. Let $U \subset \mathbb{R}^2$ be a bounded domain, which means that there exist constants a and b such that

$$U \subset \{(x_1, x_2) : a \le x_1, \le b; a \le x_2, \le b\}.$$

Let
$$D = U \times (0, \infty)$$
.

Suppose function $u \in C^2(D) \cap C(\bar{D})$ satisfies

$$u_t = a\Delta u$$
 in D ,
 $u(x,t) = 0$ on $\partial U \times (0,\infty)$,
 $|u(x,0)| \le M$ in U .

Here, a and M are positive constants.

Prove that there exist constants A > 0 and C > 0 such that

$$|u(x,t)| \le Ce^{-At}$$
 for all $(x,t) \in U$. (1)

4. Let *U* be a bounded domain in \mathbb{R}^n with C^1 boundary and let $D = U \times (0, \infty)$.

Suppose $u = u(x, t) \in C^2(\bar{D})$ is a solution of the following problem

$$\begin{cases} a\Delta u - u_{tt} = 0 & \text{in } D, \\ u(x,0) = g_0(x), & u_t(x,0) = g_1(x) & \text{in } U, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial U \times [0,\infty), \end{cases}$$

where a > 0 is a constant, g_0 , g_1 are given functions in $C^1(\bar{U})$, and n is the unit outward normal vector on the boundary ∂U .

Prove that

$$\int_{U} a |\nabla u(x,t)|^{2} + |u_{t}(x,t)|^{2} dx = \int_{U} a |\nabla g_{0}(x)|^{2} + |g_{1}(x)|^{2} dx \text{ for all } t \ge 0.$$