2013 May ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which 3 are to be graded. Problem 1, 2, and 3 will be graded if no indication is given. Strive for clear and detailed solutions.

1. a) Let A(t) be a continuous $n \times n$ matrix with the property that

$$A(t)\left(\int_0^t A(s) \ ds\right) = \left(\int_0^t A(s) \ ds\right) A(t).$$

Prove that

$$\Phi(t) = e^{\int_0^t A(s) \ ds}$$

is a fundamental matrix of the system $\dot{x} = A(t)x$.

b) Give a counter example to show that the result is not true if

$$A(t)\left(\int_0^t A(s) \ ds\right) \neq \left(\int_0^t A(s) \ ds\right) A(t).$$

2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a global Lipschitz function and $\phi(t,y)$ be the solution of the initial value problem

$$\dot{x} = f(x), \quad x(0) = y.$$

Accept the fact without proof that the maximal interval of existence of $\phi(t,y)$ is $(-\infty,\infty)$ for any y. Prove that for any a>0 and for any $\epsilon>0$, there exists a $\delta>0$ such that for all $\|y_1-y_2\|<\delta$ and for all $t\in[-a,a]$

$$\|\phi(t,y_1) - \phi(t,y_2)\| < \epsilon.$$

3. Use a Lyapunov function to show that the origin of the system

$$\dot{x}_1 = x_1^5 + x_2^6
\dot{x}_2 = -x_2 + x_1^6$$

is unstable. State any theorem that you invoke.

4. Prove that the system

$$\dot{x}_1 = x_2^2 - 8x_1
\dot{x}_2 = 2x_2 - x_1x_2$$

does not have any periodic orbit. State any theorem that you invoke.

MAY 2013. PRELIMINARY EXAMINATION Partial Differential Equations

Do three out of four problems below. Write in the following boxes the three problems that are to be graded:

Failing to clearly indicate three problems will result in Problems 1, 2 and 3 being graded.

1. Let $D = [-\pi, \pi] \times [a, b]$, where a < b are two numbers. Let U be an open, connected subset of $D \times [0, \infty)$.

Let $t_0 > 0$ be fixed. Denote by Γ the parabolic boundary of U. We write $\Gamma = \Gamma_1 \cup \Gamma_2$, where $\Gamma_1 \subset [t_0, \infty) \times D$ and $\Gamma_2 \subset [0, t_0) \times D$.

Suppose function $u \in C^2(U) \cap C(\bar{U})$ satisfies

$$\beta u_t - \Delta u \le 0$$
 in U ,
 $u(x,t) \le 0$ on Γ_1 ,
 $u(x,t) \le M$ on Γ_2 .

Here, β is a positive constant and M is a constant.

Prove that there exist constants A > 0 and C > 0 such that

$$u(x,t) \le Ce^{-At}$$
 for all $(x,t) \in U$. (1)

2. Let U be an unbounded domain (open, connected set) in $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 > x_1 > 0\}$. Suppose $u_1, u_2 \in C^2(U) \cap C(\bar{U})$ are two uniformly bounded functions in U that satisfy

$$\begin{cases} \Delta u_1 = \Delta u_2 & \text{in } U, \\ u_1 = u_2 & \text{on } \partial U, \end{cases}$$

Prove that $u_1 = u_2$ in U.

3. Let D be a bounded domain (open, connected set) in \mathbb{R}^n and $U = D \times (0, \infty)$. Let $u = u(x, t) \in C^2(\bar{U})$ be a solution to the problem

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \Delta u = -k \frac{\partial u}{\partial t} & \text{in } U, \\ u(x,0) = g_0(x), & u_t(x,0) = g_1(x) & \text{on } D, \\ u(x,t) = 0, & \text{on } \partial D \times [0,\infty), \end{cases}$$

where k > 0 is a constant and g_0 , g_1 are given functions.

Prove that

$$\lim_{t\to\infty}\int_D u^2(x,t)dx=0.$$

Hints: (a) You may need to consider the following two functionals

$$E(t) = \frac{1}{2} \int_{D} (ku + u_{t})^{2} dx$$
 and $I(t) = \frac{1}{2} \int_{D} u_{t}^{2} dx$.

(b) You may need to use the following Poincaré's inequality without proof. There exists a positive constant C_p such that for any function $v(x) \in C^2(\bar{D})$ vanishing on the boundary ∂D , one has

$$\int_{D} |\nabla v|^2 dx \ge C_p \int_{D} v^2 dx.$$

4. Consider the Laplace equation

$$\Delta u = 0$$
.

- a) State a mean value formula.
- b) State Harnack's inequality for positive solutions of the Laplace equation.
- c) Prove the above Harnack's inequality using a mean value formula.