
2013 May ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which
3 are to be graded. Problem 1, 2, and 3 will be graded if no indication is given.
Strive for clear and detailed solutions.

1. a) Let A(t) be a continuous n× n matrix with the property that

A(t)

(∫ t

0

A(s) ds

)
=

(∫ t

0

A(s) ds

)
A(t).

Prove that
Φ(t) = e

∫ t
0 A(s) ds

is a fundamental matrix of the system ẋ = A(t)x.

b) Give a counter example to show that the result is not true if

A(t)

(∫ t

0

A(s) ds

)
6=
(∫ t

0

A(s) ds

)
A(t).

2. Let f : Rn → Rn be a global Lipschitz function and φ(t, y) be the solution of the initial
value problem

ẋ = f(x), x(0) = y.

Accept the fact without proof that the maximal interval of existence of φ(t, y) is
(−∞,∞) for any y. Prove that for any a > 0 and for any ε > 0, there exists a
δ > 0 such that for all ‖y1 − y2‖ < δ and for all t ∈ [−a, a]

‖φ(t, y1)− φ(t, y2)‖ < ε.

3. Use a Lyapunov function to show that the origin of the system

ẋ1 = x51 + x62
ẋ2 = −x2 + x61

is unstable. State any theorem that you invoke.

4. Prove that the system

ẋ1 = x22 − 8x1

ẋ2 = 2x2 − x1x2

does not have any periodic orbit. State any theorem that you invoke.
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Partial Differential Equations

Do three out of four problems below. Write in the following boxes the three problems

that are to be graded:

Failing to clearly indicate three problems will result in Problems 1, 2 and 3 being
graded.

1. Let D = [−π, π] × [a, b], where a < b are two numbers. Let U be an open, connected

subset of D × [0,∞).

Let t0 > 0 be fixed. Denote by Γ the parabolic boundary of U. We write Γ = Γ1 ∪ Γ2,

where Γ1 ⊂ [t0,∞) × D and Γ2 ⊂ [0, t0) × D.

Suppose function u ∈ C2(U) ∩C(Ū) satisfies

βut − ∆u ≤ 0 in U,

u(x, t) ≤ 0 on Γ1,

u(x, t) ≤ M on Γ2.

Here, β is a positive constant and M is a constant.

Prove that there exist constants A > 0 and C > 0 such that

u(x, t) ≤ Ce−At for all (x, t) ∈ U. (1)

2. Let U be an unbounded domain (open, connected set) in {(x1, x2) ∈ R2 : x2 > x1 > 0}.

Suppose u1, u2 ∈ C2(U) ∩C(Ū) are two uniformly bounded functions in U that satisfy∆u1 = ∆u2 in U,

u1 = u2 on ∂U,

Prove that u1 = u2 in U.

3. Let D be a bounded domain (open, connected set) in Rn and U = D × (0,∞). Let

u = u(x, t) ∈ C2(Ū) be a solution to the problem
∂2u
∂t2 − ∆u = −k

∂u
∂t

in U,

u(x, 0) = g0(x), ut(x, 0) = g1(x) on D,

u(x, t) = 0, on ∂D × [0,∞),
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where k > 0 is a constant and g0, g1 are given functions.

Prove that

lim
t→∞

∫
D

u2(x, t)dx = 0.

Hints: (a) You may need to consider the following two functionals

E(t) =
1
2

∫
D

(ku + ut)2dx and I(t) =
1
2

∫
D

u2
t dx.

(b) You may need to use the following Poincaré’s inequality without proof. There exists a

positive constant Cp such that for any function v(x) ∈ C2(D̄) vanishing on the boundary

∂D, one has ∫
D
|∇v|2dx ≥ Cp

∫
D

v2dx.

4. Consider the Laplace equation

∆u = 0.

a) State a mean value formula.

b) State Harnack’s inequality for positive solutions of the Laplace equation.

c) Prove the above Harnack’s inequality using a mean value formula.
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