
2017 May ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which
3 are to be graded. Problems 1, 2, and 3 will be graded if no indication is given.
Strive for clear and detailed solutions.

1. Let A be an n × n matrix with all eigenvalues located in the left half complex plane
{λ ∈ C : Re(λ) < 0}, and let f(t) be any continuous function bounded on [0,∞).
Prove that the solution x(t) of the initial value problem

ẋ = Ax+ f(t), x(0) = x0

is bounded on [0,∞) for any initial value x0.

2. Let f : Rn → Rn be a Lipschitz function with the Lipschitz constant L. Prove that
the solution x(t) of the initial value problem

ẋ = f(x), x(0) = x0

satisfies

‖x(t)− x0‖ ≤
‖f(x0)‖

L
(eL|t| − 1)

for all t ∈ (−∞,∞).

3. Use Lyapunov function of the form V (x) = ax41 + bx22 + cx23 to determine the stability
of the system

ẋ1 = −x2 − x3 + x51
ẋ2 = x3 − x31
ẋ3 = −x2 − x31

at the origin.

4. Prove that the system

ẋ1 = −ax1 + bx22
ẋ2 = ax2 − x1x2

does not have any periodic orbit for any real numbers a, b.



MAY 2017. PRELIMINARY EXAMINATION
Partial Differential Equations

Do three out of four problems below. Clearly indicate in the following boxes which
three problems have to be graded, otherwise problems 1, 2, and 3 will be used for grading.

1. Let B = {x ∈ R3 : |x| < 1} be the ball of radius 1 centered at the origin in R3.

Let u(x) ∈ C2(B \ {0}) be a classical solution of the problem

∆u =
2
|x|2

in B \ {0},

u(x) = 0 on the boundary ∂B.

Let

M(r) = sup
|x|=r
|u(x)|, 0 < r ≤ 1,

and assume that

lim
r→0

[
M(r)r

]
= 0. (1.1)

Prove that

u(x) = 2 ln |x| in B \ {0}.

Hint: You may want to reduce the problem to the Laplace equation in B \ {0} for the

function v(x) = u(x) − 2 ln |x|, and then utilize property (1.1). Also, pay attention to the

fact that this problem is for R3.

2. Let U+ be the half strip {(x, t) : x > 0, 0 < t ≤ T }. Let u(x, t) be a classical solution of

the following initial value problem (IVP)

ut − x2uxx − xux = 0 in U+, (2.1)

u(x, 0) = 0, x > 0. (2.2)

Assume

|u| ≤ C < ∞ in U+. (2.3)
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(a) Use the substitution x = ez (or z = ln x), to show that the function v(z, t) = u(ez, t)

is a solution of the IVP:

vt(z, t) − vzz(z, t) = 0 in R × (0,T ],

v(z, 0) = 0, z ∈ R.

(b) State without proof the maximum principle for the classical solution in the class of

exponentially growing function for heat equation:

ηt − ηzz = 0 in R × (0,T ], and η(z, 0) = η0(z) in R.

Here η0(z) is a continuous and bounded function.

(c) Use the above maximum principle to prove that, under assumption (2.3), the solution

of the original IVP (2.1) and (2.2) is

u(x, t) ≡ 0.

3. Let D = U × (0,∞), where U is a bounded domain in Rn. Let u = u(x, t) ∈ C2,1
x,t (D̄) be a

classical solution of the problem

a(t)ut − ∆u = 0 in D,

u(x, 0) = u0(x) on U,

u(x, t) = 0 on ∂U × [0,∞).

Let Cp be a positive constant such that the following Poincaré’s inequality holds

Cp

∫
U

v2dx ≤
∫

U
|∇v|2dx, (3.1)

for any v ∈ C1(Ū) which vanishes on the boundary ∂U.

Assume

(i) The function a(t) belongs to C1([0,∞)) and a(t) > 0 for all t ≥ 0. Note that under

this assumption we have 0 < C1(T ) ≤ a(t) ≤ C2(T ) < ∞ for t ∈ [0,T ], where C1(T )

and C2(T ) are constants depending on T ∈ (0,∞).

(ii) There exists T0 > 0 such that the derivative a′(t) satisfies

|a′(t)| ≤ Cp, for all t ≥ T0.

Here Cp is the constant inequality (3.1).
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Let

I(t) =

∫
U

a(t) u2(x, t) dx.

Prove that:

(a) there is a constant C > 0 such that

I(t) ≤ C for all t ≥ 0;

(b) if, additionally, ∫ ∞

0

dt
a(t)

= ∞,

then

lim
t→∞

I(t) = 0.

4. Let u(x, t) be a classical solution of the Cauchy problem on the half line:

utt − uxx = 0, x, t > 0,

with the boundary condition

ux(0, t) = 0, t > 0,

and initial data

u(x, 0) = x2 and ut(x, 0) = 1, x > 0.

Find the limit

lim
t→∞

u(x, t)
t2 , for x > 0.

Hint: Use the method of reflection and D’Alambert’s formula.
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