2017 May ODE/PDE Preliminary Examination

Part I: ODE. Do 3 of the following 4 problems. You must clearly indicate which 3 are to be graded. Problems 1, 2, and 3 will be graded if no indication is given. Strive for clear and detailed solutions.

1. Let A be an $n \times n$ matrix with all eigenvalues located in the left half complex plane $\{\lambda \in \mathbb{C} : \text{Re}(\lambda) < 0\}$, and let f(t) be any continuous function bounded on $[0, \infty)$. Prove that the solution x(t) of the initial value problem

$$\dot{x} = Ax + f(t), \quad x(0) = x_0$$

is bounded on $[0, \infty)$ for any initial value x_0 .

2. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz function with the Lipschitz constant L. Prove that the solution x(t) of the initial value problem

$$\dot{x} = f(x), \quad x(0) = x_0$$

satisfies

$$||x(t) - x_0|| \le \frac{||f(x_0)||}{L} (e^{L|t|} - 1)$$

for all $t \in (-\infty, \infty)$.

3. Use Lyapunov function of the form $V(x) = ax_1^4 + bx_2^2 + cx_3^2$ to determine the stability of the system

$$\dot{x_1} = -x_2 - x_3 + x_1^5
 \dot{x_2} = x_3 - x_1^3
 \dot{x_3} = -x_2 - x_1^3$$

at the origin.

4. Prove that the system

$$\dot{x}_1 = -ax_1 + bx_2^2$$

$$\dot{x}_2 = ax_2 - x_1x_2$$

does not have any periodic orbit for any real numbers a, b.

MAY 2017. PRELIMINARY EXAMINATION

Partial Differential Equations

Do three out of four problems below. Clearly indicate in the following boxes which three problems have to be graded, otherwise problems 1, 2, and 3 will be used for grading.

1. Let $B = \{x \in \mathbb{R}^3 : |x| < 1\}$ be the ball of radius 1 centered at the origin in \mathbb{R}^3 .

Let $u(x) \in C^2(B \setminus \{0\})$ be a classical solution of the problem

$$\Delta u = \frac{2}{|x|^2} \quad \text{in } B \setminus \{0\},\,$$

u(x) = 0 on the boundary ∂B .

Let

$$M(r) = \sup_{|x|=r} |u(x)|, \quad 0 < r \le 1,$$

and assume that

$$\lim_{r \to 0} \left[M(r)r \right] = 0. \tag{1.1}$$

Prove that

$$u(x) = 2 \ln |x| \quad \text{in } B \setminus \{0\}.$$

Hint: You may want to reduce the problem to the Laplace equation in $B \setminus \{0\}$ for the function $v(x) = u(x) - 2 \ln |x|$, and then utilize property (1.1). Also, pay attention to the fact that this problem is for \mathbb{R}^3 .

2. Let U_+ be the half strip $\{(x,t): x > 0, 0 < t \le T\}$. Let u(x,t) be a classical solution of the following initial value problem (IVP)

$$u_t - x^2 u_{xx} - x u_x = 0$$
 in U_+ , (2.1)

$$u(x,0) = 0, \quad x > 0.$$
 (2.2)

Assume

$$|u| \le C < \infty \quad \text{in } U_+. \tag{2.3}$$

(a) Use the substitution $x = e^z$ (or $z = \ln x$), to show that the function $v(z, t) = u(e^z, t)$ is a solution of the IVP:

$$v_t(z,t) - v_{zz}(z,t) = 0 \quad \text{in } \mathbb{R} \times (0,T],$$
$$v(z,0) = 0, \quad z \in \mathbb{R}.$$

(b) State without proof the maximum principle for the classical solution in the class of exponentially growing function for heat equation:

$$\eta_t - \eta_{zz} = 0$$
 in $\mathbb{R} \times (0, T]$, and $\eta(z, 0) = \eta_0(z)$ in \mathbb{R} .

Here $\eta_0(z)$ is a continuous and bounded function.

(c) Use the above maximum principle to prove that, under assumption (2.3), the solution of the original IVP (2.1) and (2.2) is

$$u(x,t) \equiv 0.$$

3. Let $D = U \times (0, \infty)$, where U is a bounded domain in \mathbb{R}^n . Let $u = u(x, t) \in C^{2,1}_{x,t}(\bar{D})$ be a classical solution of the problem

$$a(t)u_t - \Delta u = 0 \quad \text{in } D,$$

$$u(x,0) = u_0(x) \quad \text{on } U,$$

$$u(x,t) = 0 \quad \text{on } \partial U \times [0,\infty).$$

Let C_p be a positive constant such that the following Poincaré's inequality holds

$$C_p \int_U v^2 dx \le \int_U |\nabla v|^2 dx, \tag{3.1}$$

for any $v \in C^1(\bar{U})$ which vanishes on the boundary ∂U .

Assume

- (i) The function a(t) belongs to $C^1([0,\infty))$ and a(t) > 0 for all $t \ge 0$. Note that under this assumption we have $0 < C_1(T) \le a(t) \le C_2(T) < \infty$ for $t \in [0,T]$, where $C_1(T)$ and $C_2(T)$ are constants depending on $T \in (0,\infty)$.
- (ii) There exists $T_0 > 0$ such that the derivative a'(t) satisfies

$$|a'(t)| \le C_p$$
, for all $t \ge T_0$.

Here C_p is the constant inequality (3.1).

Let

$$I(t) = \int_{U} a(t) u^{2}(x, t) dx.$$

Prove that:

(a) there is a constant C > 0 such that

$$I(t) \le C$$
 for all $t \ge 0$;

(b) if, additionally,

$$\int_0^\infty \frac{dt}{a(t)} = \infty,$$

then

$$\lim_{t\to\infty}I(t)=0.$$

4. Let u(x, t) be a classical solution of the Cauchy problem on the half line:

$$u_{tt} - u_{xx} = 0, \quad x, t > 0,$$

with the boundary condition

$$u_x(0,t) = 0, \quad t > 0,$$

and initial data

$$u(x, 0) = x^2$$
 and $u_t(x, 0) = 1$, $x > 0$.

Find the limit

$$\lim_{t \to \infty} \frac{u(x,t)}{t^2}, \quad \text{for } x > 0.$$

Hint: Use the method of reflection and D'Alambert's formula.