Preliminary Exam: Statistics and Probability

May 1998

Work any 8 problems and clearly indicate which problems you wish to be graded.

Begin each problem on a new page, using one side of the sheet. A table of the standard normal distribution is attached.

- **1.** Let p be a given function that is strictly positive and continuous on the real line. Let $P(x) = \int_0^x p(y) dy, x \in \mathbb{R}$.
 - **a.** For $\theta > 0$ determine the number $c(\theta)$ in such a way that the function

$$f_{\theta}(x) = \begin{cases} c(\theta)p(x), & 0 \le x \le \theta, \\ 0, & \text{elsewhere,} \end{cases}$$

is a probability density function.

A random sample X_1, \ldots, X_n of size n from the density f_{θ} is given, where the parameter $\theta > 0$ is unknown.

- **b.** Compute the maximum likelihood estimator for the unknown parameter θ .
- **c.** Find a complete sufficient statistic for θ . Why is it complete?
- **d.** Find the unbiased minimum variance estimator of $P(\theta)$.
- **e.** Determine the conditional expectation $E(P(X_1)|S)$ if S is a complete sufficient statistic for θ .
- **2.** Let X and Y be two independent standard normal random variables and introduce the random variables U = X + Y and V = X/Y.
 - **a.** Find the joint density of U and V.
 - **b.** Find the density of *V*. What is the name of the density?
 - ${\bf c.}$ Are U and V stochastically independent? Justify your answer.
- **3.** Let X_1, \ldots, X_n be a random sample of size n from the probability density function

$$f_{\theta}(x) = \begin{cases} \theta^2 x e^{-\theta x}, & 0 \le x < \infty, \\ 0, & \text{elsewhere,} \end{cases}$$

with the parameter $\theta > 0$ unknown.

a. Suppose we have a sample of size n = 1. In testing the null hypothesis $H_0: \theta = 1$ versus the alternative $H_1: \theta > 1$, let the null hypothesis be rejected if and only if $X_1 \leq 1$. Find the power function and size of this test.

In part **b.** and **c.** let the sample size n be arbitrary.

- **b.** Find the family of most powerful tests for testing the null hypothesis $H_0: \theta = 1$ versus the alternative $H_1: \theta = 2$.
- **c.** Determine the family of uniformly most powerful tests for testing the null hypothesis $H_0: \theta \leq 1$ versus the alternative $H_1: \theta > 1$.
- **4.** Let X_1, \ldots, X_{100} be a random sample of size n = 100 from the gamma distribution having density

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x \ge 0,$$

with $\alpha = 5$ and $\beta = 3$.

- **a.** Find the moment generating function of $Y = \sum_{i=1}^{100} X_i$.
- **b.** What is the name of the distribution of Y?
- **c.** Find the moment generating function of $\overline{X} = Y/100$.
- **d.** What is the name of the distribution of \overline{X} ?
- **e.** Using the central limit theorem, approximate the probability that \overline{X} is at most 14.
- **5.** Let X_1, \ldots, X_n be a random sample of size n from a distribution with probability density function

$$f_{\theta}(x) = \begin{cases} 1/\theta, & 0 \le x \le \theta, \\ 0, & \text{elsewhere,} \end{cases}$$

for some unknown $\theta > 0$ and let $Y_n = \max\{X_1, \dots, X_n\}$. Suppose the null hypothesis $H_0: \theta = 1$ is rejected in favor of the alternative $H_1: \theta > 1$ if and only if $Y_n \ge c$.

- **a.** Find the number c such that the significance level of the test is $\alpha = .05$.
- **b.** Determine the power function of this test.
- **6.** Let X_1, \ldots, X_n be a random sample from a discrete distribution with probability density function

$$f_{\theta}(x) = \begin{cases} (1-\theta)\theta^x, & x = 0, 1, 2, \dots \\ 0, & \text{elsewhere,} \end{cases}$$

with $0 < \theta < 1$ unknown.

- **a.** Show that $E(X_1) = \theta/(1-\theta)$ and $Var(X_1) = \theta/(1-\theta)^2$.
- **b.** Show that $\sum_{i=1}^{n} X_i$ is a sufficient and complete statistic for θ .
- c. Find the Cramér-Rao lower bound for an unbiased estimator of θ .
- **d.** Find the unbiased minimum variance estimator of $\theta/(1-\theta)$.
- 7. Let X_1, X_2, X_3 be a random sample from a distribution with probability density function f which is strictly positive and continuous on the entire real line. Let $Y_1 = \min\{X_1, X_2, X_3\}$ and $Y_3 = \max\{X_1, X_2, X_3\}$ and define the random variable

$$W = \int_{Y_1}^{Y_3} f(x) dx.$$

- **a.** Prove that the distribution of W does not depend on the density f when it satisfies the conditions mentioned above.
- **b.** Compute the probability density function of the random variable W.
- 8. Let X_1, \ldots, X_n be a random sample from a normal distribution with unknown mean $\theta \in \mathbb{R}$ and variance 1. We want to test the null hypothesis $H_0: \theta = 0$ versus the alternative $H_1: \theta < 0$. As an alternative to the uniformly most powerful test one may use the sign test. To describe this test let $Y_i = 1$ if $X_i < 0$ and $Y_i = 0$ if $X_i \ge 0$. The sign test rejects H_0 if and only if $\sum_{i=1}^n Y_i \ge d$, for a suitable number $d \ge 0$, depending on the size of the test.
 - **a.** What is the exact distribution of $\sum_{i=1}^{n} Y_i$ under H_0 ?
 - **b.** Use the central limit theorem to determine the number d in the description of the sign test in such a way that this test has approximate size $\alpha \in (0, 1)$.
 - **c.** Using the central limit theorem, approximate the power of the sign test derived under **b.** at the alternative $\theta = -\frac{1}{2}$.
- **9.** Let *X* and *Y* be stochastically independent random variables. Suppose that *X* has a normal distribution with mean 1 and variance 2, and that *Y* has a normal distribution with mean 2 and variance 1.
 - **a.** Find the number $a \in \mathbb{R}$ such that aX + Y and $(X Y)^2$ are stochastically independent.

(**Hint:** you may use the fact that two normally distributed random variables are stochastically independent if their covariance equals 0.)

b. Find the expected value of $(X + Y)^2$.