Preliminary Exam: Statistics and Probability

May, 2000

<u>Instructions:</u> Work on one side of the page only. Start each problem on a new page. Be complete and concise on each problem. Please turn in the solutions to exactly 8 problems.

Work any 3 of the following 5 problems. Turn in only 3 solutions.

1. A random variable, X, with cumulative distribution function given by

$$F(x) = [1 - \exp(-x^2)]^{\theta}, \ x > 0, \ \theta > 0$$

is said to be a $Burr\ Type\ X$ random variable.

Let $X_1, X_2, ..., X_n$ be a random sample from a Burr Type X population with parameter θ .

- (a) Show that the Burr Type X is in the exponential class of distributions.
- (b) Find the maximum likelihood estimate of θ , $\hat{\theta}$.
- (c) Show that $\hat{\theta}$ is a complete and sufficient statistic for θ .
- (d) Find $E[1/\hat{\theta}]$.
- **2.** Let $X_1, ..., X_n$ be a random sample of size n from the Poisson distribution with parameter $\theta > 0$, and let $r \in \mathbb{N}$ be a given integer.
 - (a) Determine a complete and sufficient statistic for θ .
 - (b) Find the uniform minimum variance estimator of θ^r .
- **3.** Define the following terms for the problem of estimating $g(\theta)$ with a loss function $L(\theta, d)$.
 - (a) An UMVU estimator;
 - (b) The risk function of an estimator δ ;
 - (c) A minimax estimator;
 - (d) An admissible estimator;
 - (e) A Bayes estimator with respect to a prior distribution λ .
- 4. Let $X_1,...,X_n$ be i.i.d. random variables from a distribution whose density function is

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & \text{if } 0 < x < \theta \\ 0, & \text{otherwise,} \end{cases}$$

for some $\theta > 0$.

(a) Formally compute the Cramér-Rao lower bound

$$\frac{1}{nE\left[\left(\frac{\partial \log f}{\partial \theta}\right)^2\right]} .$$

- (b) Show that $\hat{\theta} = \frac{n+1}{n} X_{(n)}$ is the MVUE of θ where $X_{(n)}$ is the maximum of $X_1, ..., X_n$.
- (c) Compute the variance of $\hat{\theta}$ and compare it with the Cramér-Rao lower bound.
- 5. Suppose that f is the pdf of a continuous real-valued random variable, such that the following regularity conditions are satisfied:
 - (i) f > 0 on \mathbb{R} , f' exists and is continuous on \mathbb{R} ;
 - (ii) $\lim_{|x|\to\infty} x f(x) = 0$;
 - (iii) $\int_{-\infty}^{\infty} [x^2 \{f'(x)\}^2 / f(x)] dx < \infty$.
 - (a) Show that for each $\theta > 0$ the function $f_{\theta}(x) = (1/\theta)f(x/\theta)$, $x \in \mathbb{R}$, is also a probability density function.
 - (b) Prove that $E\left[\frac{d}{d\theta}\log f_{\theta}(X)\right] = 0$.
 - (c) Compute the Fisher information about θ contained in X.
 - (d) What is the Cramér-Rao lower bound for estimating θ^2 , given a random sample of size n from f_{θ} ?

Work any 3 of the following 4 problems. Turn in only 3 solutions.

- 6. Let X be a random sample of size 1 from a probability distribution P on the real line. Let Φ denote the cumulative distribution function of the standard normal distribution. Determine the most powerful test of level $2(1 \Phi(1))$ for testing the null hypothesis that P has the standard normal density against the alternative that P has density $(1/4) e^{-|x|/2}, x \in \mathbb{R}$.
- 7. Let $X_1, ..., X_{10}$ be a random sample of size 10 from a Poisson distribution with mean θ .
 - (a) Show that the critical region C defined by $\sum_{i=1}^{10} x_i \geq 3$ is a best critical region for testing $H_0: \theta = 0.1$ against $H_1: \theta = 0.5$.
 - (b) Determine the significance level α , and the power of the test at $\theta = 0.5$.
- **8.** Let $X_1, ..., X_n$ be a random sample of size n from a distribution with pdf f(x) that is symmetric about 0, i.e. f(x) = f(-x), for all x. Define $T = [\text{number of } X_i]$'s for which $|X_i| > 1$.
 - (a) Show that T has a binomial distribution with parameters n and p, where $p = P\{|X| > 1\}$

- (b) Assume that we wish to test $H_0: p = 1/2$ against $H_1: p > 1/2$ based on a random sample of size n = 10. Find the significance level of the test if the critical region is given by $T \ge 8$.
- **9.** Let X and Y be i.i.d. continuous, uniform (0,1) random variables. Find the distribution of T = X Y.

Work any 2 of the following 3 problems. Turn in only 2 solutions.

- 10. Let Y be a $\Gamma(\alpha, \beta)$ r.v. with $\alpha = \frac{1}{\beta}$ ($\beta > 0$). Given Y = y, the conditional pdf of X is $e^{-y\Lambda(x)}y\lambda(x)$, where $\Lambda(x)$ is a smooth non-negative function, with $\lim_{x\to-\infty}\Lambda(x)=0$, $\lim_{x\to-\infty}\Lambda(x)=\infty$, and $\lambda(x)=\frac{d}{dx}\Lambda(x)$.
 - (a) Find the joint pdf of (X, Y).
 - (b) From (a) obtain the (marginal) pdf of X.
 - (c) If $\Lambda(x) = \begin{cases} \gamma x & x \geq 0 \\ 0 & x < 0 \end{cases}$, $\gamma > 0$, obtain the equations that the MLE of (γ, β) must satisfy, based on a random sample $X_1, ..., X_n$ from the pdf of X in (b).
- 11. Let X and Y be independent, with cdf's F and G, respectively. Assume $1-G=(1-F)^{\beta}$ for some $\beta>0$ and that both F and G have a density.
 - (a) Express P(X < Y) in terms of β .
 - (b) Find the c.d.f. of min(X, Y).
- 12. Let X be a random variable with pdf

$$f(x|P) = \begin{cases} P, & x = 0 \\ (1 - P)g(x), & x \in A \setminus 0 \end{cases}$$

where P is between 0 and 1, and g(x) is a function not dependent on P such that $\int_{\mathcal{A}} g(x) = 1$. Further assume that the prior distribution of P is beta with parameters α and β . That is,

$$\pi(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}, \ p \in [0,1]$$

is the prior pdf for P.

- (a) Find the posterior distribution, that is, the conditional distribution of P, given X = x.
- (b) Find the Bayes estimate for P under squared-error loss.