Statistics Prelim, May 2007

X .

Work all 8 problems. Please begin each problem on a new sheet of paper, and do not use both sides of the paper (continue on a new sheet of paper if the solution will not fit on a single sheet).

- 1. Let X_1 be an observation from a N(μ , σ^2) population, and let X_2 be an observation from a N(μ , $k\sigma^2$) population, where k is a known positive constant and X_1 and X_2 are independent.
 - (a) Find a complete and sufficient statistic for (μ, σ^2) .
 - (b) Find the minimum variance unbiased estimator of μ .
 - (c) Show that $\overline{X} = (X_1 + X_2)/2$ is an unbiased estimator of μ . Compute the variance of \overline{X} and the estimator found in part (b). For what value of k will the two variances be equal?
- 2. Let $X_1, ..., X_n$ be a random sample <u>with replacement</u> from the integers 1, 2, ..., N. Obtain the most powerful test for $H_0: N = N_0$ versus $H_1: N = N_1$, where $N_1 > N_0$.
- 3. Let X and Y be independent continuous random variables. Prove that

$$P(X < Y) = \int_{-\infty}^{\infty} F_x(y) f_y(y) dy$$
, where F_X is the cdf of X and f_Y is the pdf of Y.

- 4. Suppose X_1, X_2 , and X_3 are independent and identically distributed exponential random variables with mean $\beta > 0$. Find $P(X_3 > \min(X_1, X_2))$.
- 5. On observing X from a normal distribution with mean μ and variance 1, a statistician declares the confidence interval [X-1.96, X+1.96]. A Bayesian has the prior belief that μ is normal with mean 0 and variance 1/3. Compute the posterior probability, as a function of X, that μ is in the interval.
- 6. Let the random vector (X, Y) have the joint density f(x, y | α, β, γ) = k(α, β, γ)x^{α-1}y^{β-1}(1 x y)^{γ-1}; x > 0, y > 0, x + y < 1, α, β, γ > 0, where k(α, β, γ) is a normalizing constant such that the density integrates to 1.
 (a) Find the marginal distribution of Y. (Hint: Make the transformation u = x/(1-y).)
 (b) Find the conditional density of X given Y.

7. Suppose X_1, \ldots, X_n is a random sample from

Pres 1

$$f(x \mid \beta, \mu) = \frac{1}{\beta} \exp \left[\frac{-(x - \mu)}{\beta} \right]; x > \mu, \mu > 0, \beta > 0.$$

- (a) Find the method-of-moments estimators of μ and β .
- (b) Find the maximum likelihood estimators of μ and β .
- 8. Suppose $X_1, ..., X_n$ is a random sample from a N(μ , σ^2) population. Consider the test of H₀: $\mu = 0$ vs. H₁: $\mu \neq 0$. Show that the likelihood ratio test is equivalent to the

usual t-test, which is to reject H₀ if $\left|\frac{\sqrt{n}\overline{X}}{S}\right| > t_{\alpha/2,n-1}$, where S is the sample standard

deviation, and $t_{\alpha/2,n-1}$ is such that $P(T_{n-1} > t_{\alpha/2,n-1}) = \alpha/2$ with T_{n-1} a t-random variable with *n*-1 degrees of freedom.