Real Analysis Preliminary Examination

August, 2012

Do 7 of the following 10 problems. You must clearly indicate which 7 are to be graded. Strive for clear and detailed solutions.

- 1. Let μ^* be an outer measure on X. A collection of subsets $\{E_1, E_2, \ldots\}$ of X is called a partition of X if $E_i \cap E_j = \emptyset$, for any $i \neq j$, and $\bigcup_{i=1}^{\infty} E_i = X$. Prove that all the subsets in a partition $\{E_n\}_1^{\infty}$ are μ^* -measurable if and only if $\mu^*(A) = \sum_{i=1}^{\infty} \mu^*(A \cap E_i)$ for any subset A of X.
- 2. Let S be a dense subset of \mathbb{R} and $(X.\mathcal{M})$ be a measurable space. Prove that a real valued function f is measurable if and only if $\{x: f(x) \leq r\} \in \mathcal{M}$ for all $r \in S$.
- 3. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E) < \infty$. Prove that for any $\epsilon > 0$, there is a finite disjoint union of open intervals A such that $m(E \triangle A) = m((E \setminus A) \cup (A \setminus E)) < \epsilon$.
- 4. Let (X, \mathcal{M}, μ) be a measure space, and $\{f_n, n = 1, 2, \ldots\}$ be a sequence of measurable functions which converges a.e. Prove that if there exists a subsequence $\{n_i\}$ such that $\lim_{i \to \infty} \int |f_{n_i}| \ d\mu = 0$, then $\lim_{n \to \infty} f_n(x) = 0$ —a.e.
- 5. Let $\{f_n\}$ be a sequence of measurable functions over a σ -finite measure space (X, \mathcal{M}, μ) . Prove that if $\sum_{n=1}^{\infty} |f_n|$ is integrable, then each f_n is integrable, $\sum_{n=1}^{\infty} f_n$ converges almost everywhere and is integrable, and

$$\int \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int f_n \ d\mu.$$

- 6. Let $-\infty < a < b < \infty$ and f be a function of bounded variation on [a, b]. Prove that f can be written as f = g + h, where g is absolutely continuous and h' = 0 a.e. on [a, b].
- 7. Let (X, \mathcal{M}) be a measurable space, ν be a signed measure on (X, \mathcal{M}) , $X = P \cup N$ be a Hahn decomposition for ν . For any $E \in \mathcal{M}$, prove that

$$|\nu(E)| = |\nu|(E)$$
 if and only if either $|\nu|(E \cap P) = 0$ or $|\nu|(E \cap N) = 0$.

- 8. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space X over \mathbb{R} . Prove that if there is a c>0 such that $\|x\|_1 \leq c\|x\|_2$ for all $x \in X$, and X is complete with respect to both norms, then the two norms are equivalent.
- 9. Let H be an infinite dimensional Hilbert space. Prove that the unit sphere $S = \{f \in H : ||f|| = 1\}$ contains a sequence that converges to 0 weakly (Simply using the fact that S is weakly dense in the unit ball is not acceptable).
- 10. Let (X, \mathcal{M}, μ) be a measure space, and $f \in L^p \cap L^\infty$ for some $1 \leq p < \infty$ with $||f||_{\infty} > 0$. For any $0 < \alpha < 1$, let

$$E_{\alpha} = \{x : |f(x)| > \alpha ||f||_{\infty}\}.$$

Prove that

$$0 < \mu(E_{\alpha}) < \infty$$
, and $||f||_p \ge \alpha ||f||_{\infty} \mu(E_{\alpha})^{1/p}$.