Real Analysis Preliminary Examination

May, 2016

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

- 1. Let \mathcal{M} be a σ -algebra and $\mu: \mathcal{M} \mapsto [0, \infty]$ be a set function with the following properties:
 - i) there is a set $E \in \mathcal{M}$ such that $\mu(E) < \infty$;
 - ii) for any disjoint sets $\{E_1, \ldots, E_n\} \subset \mathcal{M}, \, \mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i);$
 - iii) for any increasing sequence $E_1 \subset E_2 \subset \cdots$ in \mathcal{M} , $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \liminf_{i \to \infty} \mu(E_i)$.

Prove that μ is a measure on \mathcal{M} .

- 2. Let E be a bounded subset of \mathbb{R} and $E_r := \{x + r : x \in E\}$ be a translation of E. Assume that the sets $\{E_r : r \in [0,1] \cap \mathbb{Q}\}$ are disjoint, and $\bigcup_{r \in [0,1] \cap \mathbb{Q}} E_r$ has nonempty interior. Prove that E is not Lebesgue measurable.
- 3. Let μ be the counting measure on the σ -algebra $P(\mathbb{R})$ of all subsets of \mathbb{R} . Prove that if f is μ -integrable, then $\{x \in \mathbb{R} : f(x) \neq 0\}$ is countable.
- 4. Let $F: \mathbb{R} \to \mathbb{R}$ be an increasing and right continuous function, and let μ_F be the associated Lebesgue-Stieltjes measure. Find $\mu_F(\{a\}), \mu_F([a,b)), \mu([a,b]), \mu([a,b])$, and $\mu_F((a,b))$. Justify your answers.
- 5. Let f, g be Lebesgue integrable functions on [0,1] and $F(x) = \int_0^x f(t) dt$, $G(x) = \int_0^x g(t) dt$. Prove that

$$\int_0^1 F(x)g(x) \ dm(x) = F(1)G(1) - \int_0^1 f(x)G(x) \ dm(x).$$

- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Evaluate $\lim_{n\to\infty} \int_{\mathbb{R}} f(x+n) \frac{x^2}{1+x^2} dx$. Justify your answer.
- 7. Let μ be a σ -finite positive measure and ν be a σ -finite signed measure on (X, \mathcal{M}) such that $\nu \ll \mu$. Prove that

$$|\nu| \ll \mu$$
 and $\frac{d|\nu|}{d\mu} = \left| \frac{d\nu}{d\mu} \right|$.

8. Let (X, \mathcal{M}, μ) be a finite measure space. Prove that for all p > 1 and for any measurable function f,

$$||f||_1 \le \mu(X)^{1-\frac{1}{p}} ||f||_p.$$

9. Let \mathcal{H} be an infinite dimensional Hilbert space. Prove that for any $\epsilon > 0$, the closed and bounded set $B_{\epsilon}(0) = \{x \in \mathcal{H} : ||x|| \leq \epsilon\}$ is not compact.