Real Analysis Preliminary Examination

May, 2018

Do 7 of the following 9 problems. You must clearly indicate which 7 are to be graded. If you do not do this, then problems 1-7 will be graded. Strive for clear and detailed solutions.

- 1. Let μ^* be an outer measure on a σ -algebra \mathcal{M} over X. Prove that if $\mu^*(E \cup F) = \mu^*(E) + \mu^*(F)$ for any disjoint E and F in \mathcal{M} , then μ^* is a measure on \mathcal{M} .
- 2. Let μ^* be an outer measure on $\mathcal{P}(X)$. Prove that for any set $E \subset X$ with $\mu^*(E) < \infty$, if there is a μ^* -measurable set $A \subset E$ such that $\mu^*(A) = \mu^*(E)$, then E itself is μ^* -measurable.
- 3. Let (X, \mathcal{M}) be a measurable space and $\{f_i : i \in \mathbb{N}\}$ be a sequence of \mathcal{M} -measurable functions on X. Prove directly that $g(x) = \inf_n f_n(x)$ is \mathcal{M} -measurable (Measurability of $\sup_n f_n(x)$ can not be used in your proof.)
- 4. Let $A = \{r_n : n = 1, 2, \dots, \}$ be an enumeration of all rational numbers in [0, 1],

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} \chi_{[r_n,\infty)}, \quad \text{and} \quad g(x) = \left\{ \begin{array}{ll} \frac{1}{2^n}, & x = r_n, \\ 0, & \text{otherwise.} \end{array} \right.$$

Accepting without proof that F is increasing and right continuous, prove that the Lebesgue-Stieltjes measure μ_F generated by F has the properties that $\mu_F(\mathbb{R}) = 1$, $\mu_F(\{r_n\}) = \frac{1}{2^n}$, $\mu_F(A^c) = 0$, and

$$\int g(x) \ d\mu_{\scriptscriptstyle F} = \frac{1}{3}.$$

5. Let f be a real-valued integrable function on a measure space (X, \mathcal{M}, μ) , and $\{E_i\}_{i=1}^{\infty}$ be measurable subsets of X such that

$$\mu\left(\bigcap_{i=1}^{\infty} E_i\right) = 0.$$

Show that

$$\lim_{n \to \infty} \int_{\bigcap_{i=1}^n E_i} f \ d\mu = 0.$$

- 6. Let $T: \mathbb{R}^n \to \mathbb{R}^k$ be a bounded linear operator. Prove that the graph $\Gamma(T)$ of T is a Borel subset of \mathbb{R}^{n+k} with Lebesgue measure zero.
- 7. Let ν and μ be σ -finite positive measures on a measurable space (X, \mathcal{M}) with $\nu \ll \mu$. Show that the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$ of ν with respect to μ satisfies

$$\frac{d\nu}{d\mu} \ge 0$$
 μ -a.e.

8. Let X be a normed vector space over \mathbb{R} and M be a finite dimensional subspace. Prove that there is a closed subspace N of X such that

$$N \cap M = \{0\}$$
 and $X = N + M$.

9. Let H be a Hilbert space and S be a subset of H. Show that

$$S^{\perp} := \{ x \in H : \langle x, s \rangle = 0 \text{ for all } s \in S \}$$

is a closed subspace.