ANNUAL ASSESSMENT REPORT AND
 STRATEGIC PLANNING UPDATE
 Year: 2009

Area or Unit Name: MATHEMATICS AND STATISTICS
Area or Unit Leader: Kent Pearce Email: kent.pearce@ttu.edu
Phone Number: (806) 742-2566 Ext: 226
Mail Stop: 1042

Section 1. Goals and Accomplishments

Goal 1: Recruit, retain, and graduate a larger, more academically prepared, and more diverse student body.

- A grant from the National Science Foundation Scholars in Science, Technology, Engineering and Mathematics Program helped to establish the South Plains Mathematics Scholars Program. The program provides annual scholarships of up to $\$ 10,000$ to students from underrepresented groups or of financial need, who plan to pursue a degree in mathematics. Eight additional students were accepted in this program in 2009, bring the total to 20 students who are being supported on this program. Additionally, a faculty mentor was assigned to each scholarship recipient.
- From departmental scholarship endowments, the department awarded \$137,000 in scholarships to 74 students.
- The department continues to host the following annual events that help to attract potential students from underrepresented groups in the West Texas area: 1) TexPREPLubbock, a summer academic program that fosters student interest in mathematics and engineering; 2) the Emmy Noether High School Mathematics Day attracted grade 8-12 female students from local schools to the TTU campus for a day of activities designed to encourage young women to seek careers in mathematics; 3) the Joy of Thinking program, which provides girls' math clubs in several local middle schools; and 4) the TTU Summer Math Academy, which provides an opportunity for high school students to conduct mathematics research under the guidance of a faculty member.

Goal 2: Enrich the educational experience at the undergraduate and graduate level.

- To obtain a more comprehensive assessment of basic knowledge and understanding of mathematics among graduating seniors and national comparative data, the department continued to administer the Educational Testing Service Major Field Exam during the spring and fall semesters.
- The department modified its embedded assessment process for measuring student learning outcomes in core courses by framing questions for assessment of student learning outcomes during the construction of the final exams (rather than tagging questions for that purpose after the fact).
- The department continued its second year of the two-year cycle for reviewing four core curriculum courses each semester (so that over a four semester cycle all 16 will be reviewed).
- Faculty have been engaged with directing undergraduate research, with 9 or more faculty participating over each of the past four years.
- The department provided support of $\$ 4980$ to 15 graduate students to make presentations at professional conferences.
- The department administered 55 preliminary exams to graduate students, the highest number over the past six years. The pass rate for students taking these exams was 69\%.

Goal 3: Advance research, creative endeavors, and professional activities.

- Faculty authored 94 scholarly journal publications that appeared in print. In addition, three books authored by faculty were published. For the 45 faculty submitting annual reports, there were also 34 peer-reviewed articles accepted for publication and 58 papers submitted. Eighty-four percent of the faculty either had a peer-reviewed publication appear, accepted or submitted.
- Faculty members gave 116 presentations at professional conferences, workshops, or colloquia at other universities.
- Eleven faculty served on editorial boards for 23 journals, including several as editor or associate editor.
- Five faculty served on federal review panels and 31 faculty served as referees for journals.
- The department hosted two conferences supported by the National Science Foundation that attracted scholars of international reputation: 1) the 9th Annual Red Raider Mini-Symposium; 2) MAA-PREP Workshop In Mathematical Biology.
- Faculty were awarded $\$ 2,380,437$ in external funding from 22 external grants, the highest value over the past six years.

Goal 4: Develop partnerships and collaborations with the community, government and private entities, and other academic institutions (K-12, community colleges, and universities) that enhance the educational, research and service mission of the department.

- The department continued its outreach to area schools with 22 faculty participating in activities such as TexPREP Lubbock, the Joy of Thinking, the Emmy Noether High School Mathematics Day, the TTU Summer Mathematics Academy.
- Two faculty members served as contest directors for the Number Sense event at the Lubbock Interscholastic League, and another was part of the administration of the UIL Mathematics Competition at Coronado High School.
- Faculty from the department have received funding from the National Science Foundation and from the Greater Texas Foundation for outreach activities to students and educators. The West Texas Middle School Math Partnership is a five-year professional enrichment and research project targeting middle school math teachers in West Texas. The GK-12: Building Bridges: Integrating Mathematics, Science and Engineering Education on the South Plains is a five-year program to prepare doctoral students to teaching in STEM programs. The Middle School Math and Science is a program to provide opportunities for math and science teachers to deepen their understanding of STEM content and pedagogical content knowledge.

Goal 5: Support and effectively utilize human resources by enhancing the quality of the work experience for faculty and staff in Mathematics and Statistics.

- The department appointed three visiting assistant professors who interacted with permanent faculty on research and outreach programs.
- Multimedia equipment was for classroom usage was purchased and installed on all first floor classrooms and half of the basement classrooms.
- All of the machines and monitors in Lab 009 were upgraded to facillate student computing access in that lab
- The department continues to maintain site license arrangements that provide faculty and students with accessibility to SAS, Matlab, Mathematica and Femlab. Additonally, the number of SAS licences and the number of Matlab toolboxes licences were increased.

Goal 6: Promote a strong positive image for Mathematics and Statistics locally, regionally, and nationally.

- One faculty member was recognized with a Professing Excellence Award from the Student Housing Association.
- Approximately one quarter of the faculty serve on editorial boards for archival journals and approximately 70% are reviewers for journals or federal funding agencies.
- The department hosted two conferences that attracted scholars from acroos the nation and around the world to Texas Tech University.
- The department continues update its webpage to provide departmental information about programs and activities. The department collected and prepared alumni, faculty and department information for a new release of its newsletter series.

Goal 7: Strengthen the department's fiscal stability while enhancing performance, assessment, and public accountability.

- The department received $\$ 2,380,436$ in external funding and F\&A in the amount of \$374,935.
http://techdata.irim.ttu.edu/stratreport/viewReportFramePF.asp

Section 2. Universal Quantitative Data

Fall Semester	2004	2005	2006	2007	2008	2009
Student Information						
Headcount						
Undergraduate	203	193	175	170	157	185
Masters	42	45	44	48	55	63
Doctoral	45	45	43	44	49	56
Law	0	0	0	0	0	0
Total	290	283	262	262	261	304
Entry Scores						
SAT	1158	1240	1173	1184	1149	1200
GRE-verbal	474	478	483	436	427	441
GRE-math	697	740	741	743	742	752
Semester Credit Hours						
Undergraduate	27885	27050	26920	27700	28486	29081
Masters	718	604	650	743	887	643
Doctoral	604	618	469	428	560	746
Law						
Total	29207	28272	28039	28871	29933	30470

Number of Lecture Classes
Taught \& Avg Class Size
Lower Division
Upper Division
All Undergraduate
Graduate
All Students

Faculty Information

FTE
Professor-Lecturer
Graduate Asst. Teaching
Total

| 56.9 |
| ---: | ---: |
| 40 |
| 96.9 |
| 56.42 |
| 38.25 |
| 94.67 |$\quad$$\quad$$\quad$$\quad$

60.27
36.5
96.77

58.5
42.77
101.27

50.5
43.5
94

Headcount
Professor-Lecturer
Total
Minority
Tenured/Tenure Track
Total
Tenured

59		
1	59 1 45 29 29 29 29	60 41

$\begin{array}{l}\text { Teaching Load } \\ \text { SCH/FTE for total faculty }\end{array}$
Student Faculty Ratio
$\begin{array}{l}\text { Faculty Salaries vs Peer } \\ \text { (Full-time Faculty - } 9 \text { Mo.) }\end{array}$

Fiscal Year	2003-2004	2004-2005	2005-2006	2006-2007	2007-2008	2008-2009
Degrees Awarded						
Undergraduate	36	50	45	29	40	33
Masters	29	27	24	23	18	14
Doctoral	6	5	11	4	4	5
Law	0	0	0	0	0	0
Total	71	82	80	56	62	52
Classes Taught by Tenured/Tenure Track						
\% Lower Div. Classes Taught	21	20	21	14	14	13
\% Ugrd Classes Taught	29	28	28	21	23	21
Financial Information						
Teaching Salaries	4496018	4516986	4607568	4634527	4954907	
Dept. Op. Expenses	408035	182039	167213	197423	208228	
Total	4904053	4699025	4774781	4831950	5163135	
Cost per SCH	81	79	84	83	89	
Cost per SCH In Const. \$	79	74	77	74	76	
External Funding						
Sponsored Projects						
Value by Home Department	406122	527683	1334823	822977	1543853	2380437
Value by Submitting Unit	378072	370149	1192357	822977	1406093	2380437
Fundraising*	287417	39700	121865	62081	44324	179589
*As provided by Development						

MATHEMATICS AND STATISTICS

Area/Unit Specific Information

Section 3a. Quantitative Information
Pr|

Faculty	Calendar Year
Research	
\# Peer Reviewed Publications	
\%Faculty Active	
\#Books Published	
\# Presentations	
\% Faculty Active	
\# Faculty serving on Editorial Boards	
\# Faculty Reviewing for Journals, Books	
\# Faculty reviewing for Federal Funding Agencies	
Awards and Distinction	
Local	
National/International	
\# Fellows	
\# New Fellows	
\# Phi Beta Kappa Members	
\# New PBK members	

Department

Scholarships and Endowments
\# Endowments
Total of Endowments
Amount of Scholarships Awarded
\# of Scholarships Awarded

Graduate Program
PhDs awarded
Masters awarded
\% Faculty directing graduate students
\# PhD Students
\# Masters Students
Total \# Graduate Students
Total \# Full Time
\# of GTA funded from AOF
\$ from AOF
\# supported by Add Grad Tuition
\$ Grad Tuition
\# supported -Misc
\$ from misc

Outreach
\# Faculty serving as McNair Mentors
\# of McNair Students
\# Faculty serving as Clark Scholar Mentors
\# of Clark Scholar Students
\# Faculty Participating in Formal Outreach Activities
\# Faculty directing undergraduate research projects

Alumni Placement
\# placements in graduate school

Facilities Improvements
$\$$ Expended

Program Assessment

Gradute Student Performance on Preliminary Examinations
\# of Preliminary Examinations Administered
\% Preliminary Examinations Passed

Employment Success of PhD and Masters Graduates
\% of PhD Receipients Employed
\% of Masters Receipients Employed or Admitted to Graduate School

50	43	42	32	31	55
56	53	33	75	81	69
100	100	91	75	100	83
95	96	100	96	90	80

Success rate of Application of Bachelor Degree Receipients to Graduate Schools
\# of Bachelor Degree Receipients Applying to Graduate School

\% Success Rate of Applicants

Success Rate of BA students taking the TExES exam
\# of Examinations Attemped
\$ Success Rate

Assesment of Undergraduate Student Learning-Calculus I
$\%$ students displaying mastery of basic concepts $\%$ students displaying mastery of computational skills
$\%$ students displaying mastery of multi-step problem solving
Assesment of Undergraduate Student Learning-Calculus II \% students displaying mastery of basic concepts Average score on questions covering basic concepts (See Commentary) \% students displaying mastery of computational skills Average score on questions covering computational skills (See Commentary) \% students displaying mastery of multi-step problem solving Average score on questions covering multi-step problems solving (See Commentary)
Assesment of Undergraduate Student Learning-Logic, Rigor, Proof \% students who can write induction proofs Average score for induction proofs \% students who can write direct proofs Average score for direct proofs \% students who can write proofs by contradiction Average score for proofs by contradiction \% students who mastered rules of logic Average score for rules of logic \% students who can communicate technical ideas effectively Average score for communicating ideas effectively

Assessment of Graduate Student Learning \% students who mastered advanced mathematical concepts Average score for advanced mathematical concepts (see commentary) \% PhD graduates with published research (see commentary) \% students who demonstrated good writing skills (see commentary) $\%$ students who demonstrated good oral communication skills (see commentary)
Assessment of Undergraduate Mastery of Basic Calculus: Differentiation (\% showing competency. See commentary) Differentiation (Average Score. See commentary) Integration (\% showing competency. See commentary) Integration (Average Score. See commentary) Multistep Problems (\% showing competency. See commentary) Multistep Problems (Average Score. See commentary) Applications (\% showing competency. See commentary) Applications (Average Score. See commentary) Infinite Series (\% showing competency. See commentary) Infinite Series (Average Score. See commentary)

Senior Peformamce on National ETS Field Exam Average Percentile Rank: Complete Exam Median Percentile Rank: Complete Exam Average Percentile Rank: Calculus problems Average Percentile Rank: Algebra problems (see commentary) Average Percentile Rank: Nonroutine problems (see commentary)
Assesment of General Education Expected Learning Outcomes
Apply arithmetic, algebra, geometry and statistics to solve problems M1430(\% showing competency. See commentary) M1550(\% showing competency. See commentary) M2300(\% showing competency. See commentary) M2350(\% showing competency. See commentary) M1300(\% showing competency. See commentary) M1320(\% showing competency. See commentary) M1351 (\% showing competency. See commentary) M2371(\% showing competency. See commentary)

Represent and evaluate basic mathematical information M1331 (\% showing competency. See commentary) M2370 (\% showing competency. See commentary) M1430(\% showing competency. See commentary) M1550(\% showing competency. See commentary)

97	32	60	42	44	
52	59	55	82	93	

34
46
36
51
44
58

48
58
58
64
53
56
57
54
58
55

77
79
40
49
62
70
53
64
40
49

M2300(\% showing competency. See commentary) M2350(\% showing competency. See commentary) M1300 (\% showing competency. See commentary) M1320(\% showing competency. See commentary) M1351 (\% showing competency. See commentary) M2371(\% showing competency. See commentary)

Use mathematical and logical reasoning to evaluate the validity of an argument M2370 (\% showing competency. See commentary) M2300(\% showing competency. See commentary) M1300(\% showing competency. See commentary) M1351(\% showing competency. See commentary) M2371(\% showing competency. See commentary)

```
Interpret mathematical models and draw inferences from them
    M1331 (% showing competency. See commentary)
    M2345 (% showing competency. See commentary)
    M2370 (% showing competency. See commentary)
    M2371 (% showing competency. See commentary)
    M1430(% showing competency. See commentary)
    M1550(% showing competency. See commentary)
    M2300(% showing competency. See commentary)
    M2350(% showing competency. See commentary)
    M1300(% showing competency. See commentary)
    M1351(% showing competency. See commentary)
    M2371(% showing competency. See commentary)
terpret mathematical models and draw inferences from them
1331 (\% showing competency. See commentary)
M2370 (\% showing competency. See commentary)
M2371 (\% showing competency. See commentary)
M1430(\% showing competency. See commentary)
M1550(\% showing competency. See commentary)
M2350(\% showing competency. See commentary)
M1351(\% showing competency. See commentary)
2371(\% showing competency. See commentary)
```


Section 3b. Qualitative Information.

- Assessment Note: The Educational Testing Service Field exam was administered to seniors during the spring and fall semesters. The exam is basically divided into two parts: algebra and calculus.
- Assessment Note: The algebra part involves linear algebra, combinatorics and algebra. The calculus part involves basic calculus, some advanced calculus, and multi-step and conceptual questions that are called non-routine.
- Assessment Note: To assess the student learning outcomes related to mastery of logic, rigor and proof, and communication skill, instructors teaching the writing intensive courses, M3310, MATH 3360 and MATH 4350 were surveyed. The instructors rated the overall ability of the students on a scale of $0-100$, and also reported the percentage of students who had achieved mastery of the skills.
- Assessment Note: The four expected learning outcomes for the mathematics core curriculum were mapped to questions on departmental finals of core courses. A course section taught by every instructor was selected by stratified random sampling. An average percentage score on each was calculated and a total score was reported by taking a weighted average across sections. A score of $70-75 \%$ was declared as knowledgeable and the number of students in order to compute the \% of demonstrating mastery of a learning outcome.
- Assessment Note: Each long semester four of the sixteen mathematics core curriculum are scheduled to be surveyed. For Fall 2009 the four mathematics core curriculum courses surveyed were: Math 1300, Math 1320, Math 1351 \& Math 2371. For M1300, the percentage results reported correspond to sample sizes of $\mathrm{N}=95$; for M 1320 , the percentage results reported correspond to sample sizes of $\mathrm{N}=106$; for M1351, the percentage results reported correspond to sample sizes of $\mathrm{N}=132$; for M 2371 , the percentage results reported correspond to sample sizes of $\mathrm{N}=29$.
- Assessment Note: To assess graduate student competency in oral and written communication skills, a survey of the advisory committee and the graduate advisor was undertaken. Faculty were asked to rate the competency of the students on a scale of 0-100 and those who scored 70 and above were deemed to be satisfactory.

Commentary:

The department has, for several years, made a concerted effort to focus more attention on assessment of the expected learning outcomes for the mathematics core curriculum courses. All faculty syllabi contain student leaning outcomes for each course and assessment measures relevant to those learning outcomes, which in many cases are provided by templates taken from the Departmental Handbook.

During the past three years, new assessment initiatives related to degree program outcomes included the use of the Educational Testing Service Major Field Exam administered to senior majors, and greater use of embedded assessment utilizing departmental finals.

In previous years' SPAR commentary it was noted that a primary concern of the department was to grow research capacity as measured by external funding. The total of external funding of research for this year (2009-2009) has exceeded $\$ 2$ million, the highest figure in departmental history. The number of appearing publications and scholarly presentations at professional meetings are also up as compared to the recent five-year history.

The department has awarded 29 PhDs in the past five years, which is slightly below the targeted expectation of 6 per year. There appears to have been a monotonic decrease in awarded MS/MA degrees over the last five years which has been countered in 2010.

The department has a strong record of outreach activities that typically involve more than 50% of the faculty. Over the last seven years, faculty have hosted annual events such as TexPREP-Lubbock and the Emmy Noether High School Mathematics Day. More recently, the Joy of Thinking program and the TTU Summer Math Academy have hosted and sponsored by the faculty.

In addition to these programs, the department has good record of providing research experiences to our undergraduates, with 9 or more faculty directing undergraduate research over each of the past four years.

Implementation Plan:

More work remains to be done in the areas of systematizing the collection of assessment data, in particular that which is gathered from the mathematics core curriculum courses, undergraduate intensive writing courses (Math 3310, MATH 3360, MATH 4350) and the core graduate course on which the preliminary examinations are based. Part of this systematizing was addressed this past academic year (relative to the process of extracting assessment data via embedded questions on final exams) by constructing prototype questions for extraction purposes in advance rather than sifting the SLOs against the body of final exam questions after the fact.

At the undergraduate level, the department needs to improve its collection mechanisms of data from graduates and alumni to represent their experiences back into the curriculum evaluation process.

At the graduate level, in order to systematize the collection of data needed to assess written and oral communication skills, a questionnaire will be developed and distributed to thesis/dissertation advisory committee members at the time of a defense.

Currently the department supports about 90 graduate teaching assistants with most support coming from AOF salaries. With the current size of the faculty (and only $2 / 3$ of the faculty directing students), the department needs to emphasize and reward faculty involvement in graduate student direction. Increasing research funding would be a critical factor in growing the graduate program and increasing research capacity of the department and align the department with university strategic goals. Currently, about 60% of the faculty are consistently actively seeking external funding and this figure should be improved.

