FINAL EXAM

Mathemattics 1320 and 1420

Tuesday, December 13, from 10:30am - 1:00pm

Follow the instructions given to you by your instructor. The test consists of 20 multiple choice problems and 4 problems to be worked out completely.

- (1) Determine whether the function, $f(x) = 2^x + 2^{-x}$ is odd, even or neither.
 - (a) Even
 - (b) Odd
 - (c) Neither odd nor even
 - (d) even and odd
 - (e) None of the above
- (2) Find the equation of the line passing through the two points (-2, -4) and (1,-1)
 - (a) y = x + 2
 - (b) y = -x 2
 - (c) y = -x + 2
 - (d) y x + 2 = 0
 - (e) y = 2x + 1
- (3) Perform the indicated operation and write the result in standard form.

Perform the indica
$$\frac{1+2i}{1-2i} + \frac{1-i}{1+2i}$$
(a)
$$\frac{-4+i}{5}$$
(b)
$$\frac{2+i}{5}$$
(c)
$$\frac{-4+i}{3}$$
(d)
$$\frac{-4+4i}{3}$$
(e) None of the all

- (e) None of the above
- (4) Solve the following rational equation:

$$\frac{3}{x+2} + \frac{2}{x-2} = \frac{8}{(x+2)(x-2)}$$

The solution of this equation is:

- (a) $\{-2,2\}$
- (b) {2}
- (c) {-1}
- (d) Ø
- (5) Solve the following absolute value inequality and use interval notation to express the solution set.

$$1 < |x - 1| < 2$$

- (a) (-1,3)
- (b) $(0,\infty)$
- (c) (0,3)
- (d) none of the above

- (6) Write an equation of the line passing through (5, -9) and perpendicular to the line whose equation is x + 7y - 12 = 0.
 - (a) y = 7x 44
 - (b) y = 7x 26

 - (c) $y = -\frac{1}{7} + 9$ (d) y = -7x + 44
- (7) Solve the exponential equation $e^{x+5} = 2$.
 - (a) $\ln 2 5$
 - (b) $e^2 + 5$
 - (c) e^{10}
 - (d) ln 7
- (8) Give the domain and the range of the relation $\{(-4, -10), (-2, -5), (0, 5), (2, 10), (4, 15)\}$
 - (a) domain: $\{-4, -2, 0, 2, 4\}$; range: $\{-10, -5, 5, 10, 15\}$
 - (b) domain: $\{-4, -5, 0, 10, 4\}$; range: $\{10, 5, 4, 15, -2\}$
 - (c) domain: $\{10, 5, 1, 15, 4\}$; range: $\{-4, -2, 0, 2, 4\}$
 - (d) domain: $\{-10, -5, 5, 10, 15\}$; range: $\{-4, -2, 0, 2, 4\}$
- (9) The partial fraction decomposition of $\frac{11x-35}{(x-1)(x-4)}$ is
 - (a) $\frac{3}{x-1} + \frac{1}{x-4}$ (b) $\frac{-3}{x-2} + \frac{-3}{x-4}$ (c) $\frac{3}{x-1} + \frac{2}{x-4}$ (d) $\frac{8}{x-1} + \frac{3}{x-4}$
- (10) Determine which given ordered pair is a solution of the system.

$$\begin{cases} x + 3y = 11 \\ x - 5y = -13 \end{cases}$$

- (a) (2,3)
- (b) (2,4)
- (c) (3,3)
- (d) (3,4)
- (e) (4,3)
- (11) Condense the logarithmic expression into a single logarithm whose coefficient is 1.

$$3\ln x - \frac{1}{3}\ln y$$

- (a) $\ln(x^3y^3)$
- (b) $\ln(\frac{x^3}{\sqrt[3]{y}})$
- (c) $\ln(\frac{x^3}{y^3})$
- (d) $\ln(x^3\sqrt[3]{y})$
- (e) None of the above

- (12) Solve: $5x^2 + x 2 = 0$
- (12) Solve: $5x^2 + x 2 = 0$ (a) $\frac{-1 \pm \sqrt{41}}{10}$ (b) $\frac{-1 \pm \sqrt{41}}{2}$ (c) $\frac{1 \pm \sqrt{-39}}{10}$ (d) $\frac{-1 \pm \sqrt{-39}}{5}$ (e) $\frac{-5 \pm \sqrt{-39}}{5}$ (13) The length of a rectangular sign is 3 feet longer than the width. If the sign's area is 54 square feet, find its length and width. sign's area is 54 square feet, find its length and width.
 - (a) l = 6, w = 9
 - (b) l = 18, w = 3
 - (c) l = 9, w = 6
 - (d) l = 27, w = 2
- (14) Find an equation for $f^{-1}(x)$, the inverse function, for

$$f(x) = \frac{2x+1}{x-3}$$

- (a) $\frac{x-2}{3x+1}$ (b) $\frac{3x+1}{x-2}$ (c) $\frac{x-3}{2x+1}$ (d) $\frac{2x-3}{x-1}$
- (15) Determine asymptotes of the rational function $f(x) = \frac{3x^2 + 2x 1}{x^2 36}$.
 - (a) Vertical asymptote: x = 6, x = -6; horizontal asymptote: none.
 - (b) Vertical asymptote: x = 6, x = -6; horizontal asymptote: y = 3.
 - (c) Vertical asymptote: none; horizontal asymptote: y = 6, y = -6.
 - (d) Vertical asymptote: x = 3; horizontal asymptote: y = 6, y = -6.
- (16) For the polynomial $f(x) = 3x^3 3x^5 + 7x^6 15 5x^3$, what is the degree of f(x)?
 - (a) 2
 - (b) 6
 - (c) 15
 - (d) 5
- (17) Expand and evaluate where possible $\log\left(\frac{x+3}{x^2}\right)$
 - (a) $2\log x \log(x+3)$
 - (b) $\log(x+3) \log x$
 - (c) $\log(x+3) 2\log x$
 - (d) $\log(x+3) + 2\log x$
- (18) $f(x) = x^3$ and $h(x) = (x+2)^3 1$ How do we find h(x)?
 - a Move f 2 units right and 3 units down
 - b Move f 2 units right and 1 unit down
 - c Move f 2 units left and 1 unit down
 - d Move f 2 units left and 1 units up

(19) Write the second term of the sequence whose nth term is given

$$a_n = \frac{(-1)^n \times 2^{n^2}}{(n+1)!}$$

- (a) $\frac{8}{3}$ (b) $\frac{16}{3}$ (c) $\frac{4}{3}$ (d) $\frac{15}{6}$ (e) $\frac{13}{6}$
- (20) A sample of 800g of lead decays to polonium according to the function given by $A(t) = 800e^{-0.032t}$, where t is time in years. What is the amount of the sample after 50 years (to the nearest g)?
 - (a) 39g
 - (b) 117*g*
 - (c) 162g
 - (d) 3962g

The following problems are to be worked out entirely.

- (21) I invest \$1,234.97 at an annual percentage rate of 8%. How long will it take my investment to double? Remember $P_{n+1} = (1+i)P_n$.
- (22) Two standard 6 sided dies are rolled. The two numbers that are face up are summed. What is the probability that the sum of the two numbers is
- (23) Find the sum of the following sequence

$$1 + 2^{-1} + 2^{-2} + 2^{-3} + \dots + 2^{-45}$$
.

(24) Find the tangent lines to the circle $x^2 + y^2 = 1$ that pass through the point $(0,5) = (x_0, y_0).$