<u>Instructions:</u> Show all of your work in the blue book. Failure to show all work may result in no credit for that problem.

1. A windmill with radius 14 feet makes 130 revolutions per minute. What is the linear speed of a point on the edge of the windmill in feet per second?

2. If $y = 5 + 3\cos(3x - 6)$, find the:

a) amplitude;

b) vertical shift;

c) period;

d) phase shift

3. Find the exact value of each of the following without using a calculator.

a) $arccos(\frac{-1}{2});$

b) $\cos(\arcsin\frac{3}{5})$;

c) $\sin(\frac{5\pi}{12})$;

d) $\frac{2\tan(\frac{\pi}{12})}{1-\tan^2(\frac{\pi}{12})}$

4. For the vectors $\mathbf{u} = \langle 7, -1 \rangle$ and $\mathbf{v} = \langle 1, 1 \rangle$, find

a) 2u - 3v

b) u·v

c) |3u|

5. The base of a tree is 32.5 meters away from a building. Find the height of the building if the angle of elevation from the base of the tree to the top of the building is 40°18′.

6. Verify that the following equation is an identity: $(\sin(x) + \cos(x))^2 = \sin(2x) + 1$.

7. Find the area of the sector of a circle with radius 5.4 feet and a central angle of 120°.

8. Find all solutions to the equation $\sin^2(\theta) - 3\sin(\theta) + 2 = 0$ in the domain $[0, 2\pi)$.

9. Find the remaining angles and sides of triangle ABC provided that $C=84^{\circ},\ A=73^{\circ},$ and a=128 inches.

10. A spool of thread has a diameter of 12 cm. If a piece of string is wound around through an angle of 540°, how much thread is on the spool?

11. A fishing boat leaves port headed due north and travels 14.1 mi. The boat then turns on a bearing of N36°E and travels 3.8 mi. How far is the fishing boat from port?

12. A stone glass window is formed by piecing together 20 equilateral triangles, each with side length of 4 inches. What is the area of the stone glass window?

Sum and Difference Formulas

$$\cos(A+B)=\cos(A)\cos(B)-\sin(A)\sin(B)$$

$$\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$$

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \tan(B)}$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \tan(B)}$$
$$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A) \tan(B)}$$

Double Angle Formulas

$$\cos(2A) = \cos^2(A) - \sin^2(A) = 2\cos^2(A) - 1 = 1 - 2\sin^2(A)$$

$$\sin(2A) = 2\sin(A)\cos(A)$$

$$\tan(2A) = \frac{2\tan(A)}{1-\tan^2(A)}$$

Half-Angle Identities

$$\cos(\frac{A}{2}) = \pm \sqrt{\frac{1 + \cos(A)}{2}}$$

$$\sin(\frac{A}{2}) = \pm \sqrt{\frac{1 - \cos(A)}{2}}$$

$$\sin\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1-\cos(A)}{2}}$$

$$\tan\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1-\cos(A)}{1+\cos(A)}} = \frac{\sin(A)}{1+\cos(A)} = \frac{1-\cos(A)}{\sin(A)}$$

Law of Sines

For triangle ABC,
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Law of Cosines

For triangle ABC, the following hold:

$$a^2 = b^2 + c^2 - 2bc\cos(A)$$

$$b^2 = a^2 + c^2 - 2ac\cos(B)$$

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

Area of a Triangle (SAS)

For triangle ABC, the area $\mathcal A$ is given by the following formulas:

$$\mathcal{A} = \frac{1}{2}bc\sin(A)$$

$$A = \frac{1}{2}ab\sin(C)$$

$$A = \frac{1}{2}ac\sin(B)$$

Heron's Area Formula (SSS)

If a triangle has sides of lenghts a, b, and c, with semiperimeter $s=\frac{1}{2}(a+b+c)$ then the area $\mathcal A$ of the triangle is given by the following formula.

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$