MATH 1331 Final Exam, Fall 2011

Version A

1. The following table shows the net sales, in millions of dollars, for a manufacturer of laptop computers during the last five years.

Year, x	1	2	3	4	5
Net Sales, y	426	437	460	473	477

Use linear regression to find the least squares line for this data.

- a) y = 426x + 12.75
- **b)** y = 12.75x + 426
- c) y = 413.2x + 13.8
- d) y = 13.8x + 413.2
- e) y = 3.0x + 454.6
- 2. An office supply company estimates that the total cost of making x ergonomic desk chairs, in dollars per year, is given by

$$C(x) = 10.3\sqrt{x} + 52.5x$$

What happens to the **AVERAGE** cost per chair when x becomes very large (i.e., what is the limit of the average cost as x goes to infinity)?

- a) it approaches 52.5
- b) it approaches 57.65
- c) it becomes infinitely large
- d) it approaches 0
- e) it approaches 62.8
- 3. The position s (in feet) of a prototype SUV t seconds after starting a particular test is given by the following function:

$$s(t) = -2t^3 + 13t^2 - 10t$$

What is the SUV's velocity (i.e., at what rate is its position changing) after 4 seconds?

- a) 36 ft/s
- **b)** -2 ft/s
- **c)** 70 ft/s
- d) 8 ft/s
- e) -22 ft/s

4. Scientists in a small developing nation have determined that the number of births per capita, B, in the nation is given by

$$B(x) = \sqrt{60 - 8x - 0.1x^2} \qquad (0 \le x < 7)$$

where x is the current population in millions. Find the rate at which B(x) is changing (rounded to two decimal places) when the population is 6 million people.

- a) -1.59 births/capita per million people
- b) 2.90 births/capita per million people
- c) 0.17 births/capita per million people
- d) -4.80 births/capita per million people
- e) -2.90 births/capita per million people
- 5. A publishing company finds that the demand for one of their calculus study guides is modeled by the function

$$d(x) = \frac{35x}{2 + 0.2x^2}$$

where d(x) is the quantity demanded per month (measured in units of a thousand) and x is the unit price (in dollars). At what rate is the demand for study guides changing when the price per book is \$12?

- a) -30,455 books/month per \$1 increase
- b) 7,291 books/month per \$1 increase
- c) -989 books/month per 1 increase
- d) -938,000 books/month per 1 increase
- e) 13,636 books/month per \$1 increase
- 6. Find the slope of the tangent line to the graph of

$$f(x) = x^2 e^{-3x}$$

for all x.

- a) $xe^{-3x}(2+x)$
- **b)** $2xe^{-3x}$
- c) $x^2e^{-3} + 2xe^{-3x}$
- d) $-6xe^{-3x}$
- e) $xe^{-3x}(2-3x)$

7. The price (in dollars) charged by a large retailer for package of mechanical pencils is given by

$$p = -.3x + 9.4$$

where x is the demand for pencils in millions of packages. How many packages does the retailer need to sell to maximize their **revenue**?

- a) about 31,333,333
- **b**) about 15,666,667
- **c**) about 16
- **d**) about 31
- e) as many as possible

8. Find the rate at which the graph of the following function is changing:

$$g(x) = \ln(2x^3 - 4x^2 + 6)$$

a)
$$\frac{1}{2x^3 - 4x^2 + 6}$$

b)
$$\frac{6x^2 - 8x}{\ln(2x^3 - 4x^2 + 6)}$$

c)
$$\frac{2x^3 - 4x^2 + 6}{6x^2 - 8x}$$

$$\mathbf{d)} \ \frac{3x^2 - 4x}{x^3 - 2x^2 + 3}$$

e)
$$\ln (6x^2 - 8x)$$

9. What is the absolute minimum value obtained by

$$f(x) = -\frac{2}{3}x^3 - \frac{3}{2}x^2 + 9x + 7$$

on the interval [-5,4].

- **a**) -3.0
- **b)** -23.7
- c) -29.1
- **d)** -15.5
- e) no minimum

10. A bed and breakfast has determined that their annual revenue is related to the money they spend on advertising by the equation

$$R(x) = -0.003x^3 + 1.35x^2 + 2x + 8000$$

where the revenue R and the amount spent on advertising x are both in thousands of dollars. Find the amount spent on advertising at the company's point of diminishing returns (to the nearest thousand dollars).

- a) \$301,000
- **b)** \$205,000
- c) \$29,000
- **d**) \$150,000
- e) \$8,000
- 11. Find the marginal profit function for a manufacturer to make x graphing calculators if the profit function is given by

$$P(x) = \frac{7}{\sqrt{x}} + 13x$$

- a) $-\frac{7}{x^{-1/2}} + 13$
- **b)** $\frac{7x}{x^{3/2}} + \frac{13}{2}x^2$
- c) $7x^{3/2} + \frac{13}{2}x^2$
- **d**) $-\frac{7}{2}x^{1/2} + 13$
- e) $-\frac{7}{2x^{3/2}} + 13$
- 12. Sir Isaac's Wonderland is a small amusement park that caters exclusively to private parties and special occasions. The park charges \$64.50 per person for an all day pass for parties of up to 15 people. However, if there are more than 15 people in a party, then each person's ticket price is reduced by \$1.50 for each additional person. (For example, with a group of 17 people, the tickets would cost \$61.50 per person.) Determine how many people in a party will result in the maximum revenue for the amusement park.
 - a) as many as possible
 - b) 14 people
 - c) 43 people
 - d) 37 people
 - e) 29 people

13. Find the indefinite integral

$$\int \frac{x^3 - x}{x^4 - 2x^2} \, dx$$

a)
$$\frac{\ln|x^4 - 2x^2|}{4} + C$$

b)
$$\frac{(x^4/4) - (x^2/2)}{(x^5/5) - (2x^3/3)} + C$$

c)
$$4 \ln |x^4 - 2x^2| + C$$

d)
$$\ln |4x^3 - 4x| + C$$

e)
$$\frac{1}{(x^4-2x^2)^2}+C$$

14. A cargo train is moving along a straight track at a rate (in feet/minute) that is given by the equation

$$v(t) = 6t^2 \sqrt{343 - t^3} \qquad (0 \le t \le 7)$$

after t minutes. Find the **average** distance the train travels each minute between the 2nd and 6th minutes. (Round to the nearest foot.)

- a) 572 feet
- **b**) 2288 feet
- **c)** 6267 feet
- d) 1567 feet
- **e**) 1604 feet
- 15. Find the area underneath the curve $g(x) = 4xe^{-x^2}$ on the interval from x = 0 to x = 2.
 - a) 0.147 square units
 - b) 0.037 square units
 - c) -0.037 square units
 - d) 0.293 square units
 - e) 1.963 square units

16. Albert purchased a new espresso machine for his coffee shop that he expects will generate income at a rate of

$$R(t) = 55,000$$

dollars each year, for the next 7 years. If the income from the machine is reinvested at a rate of 9% per year compounded continuously, find the total accumulated value of this income stream after 7 years, to the nearest dollar.

- a) \$622,791
- **b**) \$385,000
- **c**) \$536,318
- **d**) \$285,638
- e) \$419,650
- 17. The demand function for a brand of certain printer ink replacement cartridges is given by

$$p = -0.02x^2 - 0.5x + 14$$

where p is the unit price in dollars, and x is the number of cartridges demanded per week, in thousands. Determine the consumers' surplus if the market price is set at \$11/cartridge.

- a) \$62,917
- **b)** \$114,877
- c) \$7,917
- **d**) \$6,080
- e) \$59,877
- 18. The economic advisors of a certain country are interested in the wealth distribution of various professions. They find that the Lorentz curve for the distribution of income of dentists was modeled by

$$f(x) = \frac{6}{7}x^2 + \frac{1}{7}x$$

and the distribution of income of accountants was

$$g(x) = \frac{12}{13}x^2 + \frac{1}{13}x$$

Find the coefficient of inequality of dentists, the coefficient of inequality of accountants, and state which distribution is more equitable.

- a) 0.2857; 0.3077; accountants
- b) 0.2857; 0.3077; dentists
- c) 0.1429; 0.1539; dentists
- d) 0.5714; 0.4615; dentists
- e) 0.5714; 0.4615; accountants

19. Find the indefinite integral

$$\int \left(\frac{1}{x} - 9\right) (x^3 - x) \, dx$$

a)
$$-\frac{9}{4}x^4 + \frac{1}{3}x^3 + \frac{9}{2}x^2 - x + C$$

- b) does not exist
- c) $-27x^2 + 2x + 9 + C$
- d) $(\ln|x| 9x)(3x^2 1) + C$

e)
$$(\ln|x| - 9x)(x^3 - x) + (\frac{1}{x} - 9)(\frac{1}{4}x^4 - \frac{1}{2}x^2) + C$$

20. Sales at the Leibniz Boat Emporium are currently increasing at a rate of

$$5 + 0.5t^{3/2}$$

hundred boats per year, where t is the time in years. It is determined that if they follow a new aggressive advertising plan, their sales will increase at a rate of

$$5e^{0.4t}$$

hundred boats per year. Assuming that the plan is implemented, how many more boats can they expect to sell over the next 4 years than they would have without the new advertisement?

- a) 3551 boats
- **b)** 1577 boats
- c) 841 boats
- d) 2477 boats
- e) 2301 boats

Useful Formulas:

$$CS = \int_0^{\overline{x}} D(x) \, dx - \overline{p} \, \overline{x}$$

$$PS = \overline{p}\,\overline{x} - \int_0^{\overline{x}} S(x) \, dx$$

$$A = e^{rT} \int_0^T R(t)e^{-rt} dt$$

$$PV = \int_0^T R(t)e^{-rt} dt$$

$$A = \frac{mP}{r}(e^{rT} - 1)$$

$$PV = \frac{mP}{r}(1 - e^{-rT})$$

$$L = 2 \int_0^1 [x - f(x)] dx$$

$$a = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$