Show our all your work as described in class! Work the problems in correct order. Please circle your final answers. Use 4 decimal places where needed.

1. The GMAT scores (the test required to enter a graduate school business program) and the undergraduate GPA for 6 students are given below. Find the slope and intercept of the best fit line for the following data using a linear regression

GMAT	750	620	800	720	530	680
GPA	3.9	3.1	3.95	3.2	2.1	3.5

2. The profit (in millions of dollars) associated with manufacturing x units of a certain commodity is given by

$$P(x) = \frac{5x^2 - 3x + 200}{4x^2 + 50}$$

What is the profit as number of units increases without bound? That is, evaluate the limit of the profit as x tends to infinity.

3. A company manufactures a series of 52-in flat screen televisions. The quantity x of these sets (in thousands) demanded each week is related to the wholesale unit price p by the following equation

$$p = 700 - 20x$$

The weekly total cost incurred by the company for producing x sets is represented by the following equation

$$C(x) = 50x + 450$$

- a) Find the revenue function R(x).
- b) Find the profit function P(x).
- c) Find the marginal profit function.
- 4. Find the marginal revenue function for the given price function

$$p(x) = \ln(3 - \sqrt{x})$$

5. Find the marginal cost function for the given cost function

$$C(x) = \frac{e^{3x^2}}{x^5 + 3x}$$

6. The percentage of households using Netflix t years after 2000 is given by

$$f(t) = 2t^3 - t + 5$$

How fast was the percentage of Netflix users changing in 2003?

7. The monthly cost for renting x apartments is given by the function

$$C(x) = x^3 - 51x^2 + 40000$$

How many units should the complex rent to minimize their cost? What is the minimum cost the complex can realize?

- 8. The quantity demanded each month for Texas Tech sports apparel is related to the unit price given by p = 40 2x, where p is measured in dollars and x is measured in thousands. To yield the maximum revenue, how many items must be sold? How much should they charge?
- 9. Katie wants to make gift boxes for her Thanksgiving guest. She decides to make her box out of 8 in by 8 in card stock by cutting equal squares out of the corners and folding up the remaining sides. What size does she need to cut the squares to make the volume a maximum? What are the dimensions of the box? What is the volume of the box?

10. After analyzing the data, Leonard determines that the total annual revenue R brought in by his computer manufacturing company is related to the amount of money x spent on new research and development by the function

$$R(x) = x^4 - 10x^3 + 36x^2 + 12x + 24$$

where both R and x are measured in thousands of dollars. Find the company's point of diminishing returns on its research spending (that is, find where the marginal revenue is zero; ie, find the inflection point.).

11. Evaluate the following integrals

a)
$$\int \frac{(\ln x)^4}{x} dx$$

b)
$$\int_0^1 (2x+3)\sqrt{x^2+3x+4} \ dx$$

$$\int 4e^x - \frac{4}{x^7} + 1 \ dx$$

12. Based on a preliminary report of geological survey team, it is estimated that a newly discovered oil field can be expected to produce oil at a rate of

$$R'(x) = \frac{x^2 - 2}{x^3 - 6x + 8}$$

millions barrels/year, x year after production begins. Find the amount of oil that the field can be expected to yield during the 5 year of production, assuming that the projection holds true.

- 13. Find the area of the region under the graph of the function $f(x) = \frac{7}{2} + x^2$ on the interval [1,3].
- 14. Gus just bought a 5-year franchise license for a doughnut shop that he expects will generate income at a rate of R(t) = 300,000

dollars each year. If the prevailing interest rate over the 5 years is 8% per year compounded continuously, find the present value of the franchise.

15. The demand function, $p = -0.01x^2 - 0.04x + 7.6$, for a brand of certain printer ink replacement cartridges demanded per week, in thousands. Determine the consumers' surplus if the market price is set at \$6/cartridge.

Average Value:
$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$PS = \bar{p}\bar{x} - \int_{0}^{x} S(x) dx$$

$$A = \frac{mP}{r} (e^{rT} - 1)$$

$$L = 2 \int_{0}^{1} \left[x - f(x) \right] dx$$

$$A = e^{rT} \int_{0}^{T} R(t) e^{-rt} dt$$

$$PV = \int_{0}^{T} R(t) e^{-rt} dt$$

$$PV = \int_{0}^{T} R(t) e^{-rt} dt$$