Final Exam Math 1451 Version A Fall 2015

Please turn off and put away your cell phones. Calculators are not allowed. To receive any credit show all your work as described in class. Copyright 2015 Department of Mathematics and Statistics, Texas Tech University. Unauthorized reproduction prohibited.
(1) Evaluate the following limits:
(i) $\lim _{x \rightarrow 1} \frac{x}{x^{2}+1}$
(ii) $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}-x}+x}$
(iii) $\lim _{x \rightarrow \infty} x^{-5} \ln (x)$
(iv) $\lim _{x \rightarrow \infty} x^{1 / x}$
(2) For each function below find $\frac{d y}{d x}$:
(i) $y=\left(\frac{x^{2}+5}{x^{2}-5}\right)^{3}$
(ii) $y=\tan ^{-1}(3 x)$
(iii) $y=\ln \left(\sin ^{2}(x)\right)$
(iv) $y=8 x \sec ^{4}\left(x^{3}\right)$
(3) Using implicit differentiation, find $\frac{d y}{d x}$ when $e^{x y}=3 y^{2}-2 \ln (x)$.
(4) Find the equation of the tangent line to the graph of the function $f(x)=\tan \left(\frac{x}{4}\right)$ at $x=\pi$.
(5) A 13 ft ladder is leaning against a house when its base starts to slide away. By the time the base is 12 ft from the house, the base is moving at the rate of $6 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall at this point? Include units.
(6) Given the function $f(x)=\frac{2 x^{2}-2 x-12}{x^{2}-9}$, find the horizontal and vertical asymptotes.
(7) Given the function $f(x)=2 x^{4}+16 x^{3}-7$,
(i) determine the critical numbers of f.
(ii) determine whether each critical number is a relative maximum, relative minimum, or neither.
(8) Use the function $f(x)=3 x^{5}-10 x^{4}+x-1$ to
(i) find the inflections points of its graph.
(ii) determine where its graph is concave up.
(iii) determine where its graph is concave down.
(9) Find the following indefinite integrals:
(i) $\int \frac{x^{3}+x^{2} \sin (x)-2}{x^{2}} d x$
(ii) $\int \frac{e^{x}}{e^{x}+1} d x$
(10) Evaluate the following definite integrals:
(i) $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{8}} \frac{3}{\cos ^{2}\left(2 x-\frac{\pi}{2}\right)} d x$
(ii) $\int_{0}^{\frac{1}{2}} \frac{x}{\sqrt{1-x^{2}}} d x$
(11) For the subsequent questions, use the following definition and graph of f.

$$
f(x)= \begin{cases}3 & \text { if } x<-3 \\ -1 & \text { if } x=-3 \\ 2 x+2 & \text { if }-3<x \leq 0 \\ x+2 & \text { if } 0<x<3 \\ 1 & \text { if } x=3 \\ -2 & \text { if } 3<x\end{cases}
$$

(i) What is $\lim _{x \rightarrow-3} f(x)$?
(ii) What is $\int_{-2}^{2} f(x) d x$?
(iii) What is $\lim _{h \rightarrow 0}\left(\frac{\int_{0}^{2+h} f(x) d x-\int_{0}^{2} f(x) d x}{h}\right)$?

