Final 2015

Please turn off and put away your cell phones. Use of calculators is not allowed. To receive full credit show all your work and circle your final answer.
(1) Evaluate the following limits:
(i) $\lim _{x \rightarrow \infty} \frac{5 x^{4}-4 x^{2}+1}{-x^{4}+10}$
(ii) $\lim _{x \rightarrow 0^{+}} x^{x}$
(iii) $\lim _{x \rightarrow \pi}\left(\frac{\cos (x / 2)}{3 x-3 \pi}\right)$
(2) For each function below find $\frac{d y}{d x}$:
(i) $y=2 x^{4}-e \ln (x)+e^{x}$
(ii) $y=\sin ^{-1}(3 x)$
(iii) $y=\cos (x) \sin (x)$
(iv) $y=\frac{x}{\cos (x)}$
(3) Using implicit differentiation find y^{\prime} when $2 x^{2}+y^{3}=2$.
(4) Find the equation for the line through the point $(1,2)$ tangent to curve $y=x^{2}+1$
(5) A ladder 10 ft long rests against a vertical wall and is sliding down the wall at the rate of $2 \mathrm{ft} / \mathrm{s}$ at the instant the foot of the ladder is 6 ft from the base of the wall. At this instant, how fast is the foot of the ladder moving away from the wall?
(6) Given the function $f(x)=\frac{3 x^{2}-3 x-18}{x^{2}+x-2}$ find the horizontal and vertical asymptotes.
(7) Use the function $f(x)=3 x^{5}-20 x^{3}+4$ to answer the questions below:
(i) Where does f have relative maximums?
(ii) Where does f have relative minimums?
(8) Use the function $g(x)=2 x^{6}-5 x^{4}+2$ to answer the questions below:
(i) Where is g concave down?
(ii) Where is g concave up?
(iii) Where does g have inflection points?
(9) Find the indefinite integrals below:
(i) $\int\left(\frac{x^{2}+x^{-2}}{2}\right) d x$
(ii) $\int\left(\cos ^{2}(x) \sin (x)\right) d x$
(10) Evaluate the following definite integrals:
(i) $\int_{0}^{\frac{\pi}{3}} \tan (\theta) d \theta$
(ii) $\int_{1}^{e}\left(\frac{\ln \left(x^{4}\right)}{x}\right) d x$
(11) For the subsequent questions use the following definition of f. The graph of the function is on the right.

$$
f(x)= \begin{cases}\frac{2}{3} x+\frac{7}{3} & \text { if } x \leq-2 \\ \frac{1}{2} x+1 & \text { if }-2<x \leq 0 \\ 1 & \text { if } 0<x \leq 3 \\ \frac{1}{2} x-\frac{1}{2} & \text { if } 3<x\end{cases}
$$

(i) What is $\lim _{x \rightarrow-2^{-}} f(x)$?
(iii) What is $\lim _{h \rightarrow 0}\left(\frac{\int_{0}^{4+h} f(x) d x-\int_{0}^{4} f(x) d x}{h}\right)$?
(12) Using the Trapezoid rule approximate $\int_{0}^{4} x^{2} d x$ with $n=4$.
(13) Find the average value of $f(x)=x^{3}$ on $[0,2]$.

