Calculators are not allowed on this exam. Work all questions completely. Show all work as described in class. Copyright 2015 Dept of Mathematics and Statistics, Texas Tech University. Unauthorized reproduction prohibited.

1. Consider the region bounded by $y=\sqrt{x}$ and $y=\frac{1}{2} x$. Set up (but do not solve) integrals to find
(a) The area of this region.
(b) The volume of the solid generated by rotating this region about the vertical line $x=5$ using both shells and washers.
(c) The center of mass of this region, assuming the density is 1 .
2. Express the point $(-1, \sqrt{3})$ in polar coordinates with $0 \leq \theta<2 \pi$.
3. Consider a cylindrical tank with radius 3 ft and height 10 ft . If it is filled with a fluid with weight density $94 l b / f t^{3}$, set up an integral to find the work required to pump all the fluid out of the top of the tank.
4. Evaluate the following integrals.
(a) $\int \frac{x-1}{x\left(x^{2}+1\right)} d x$
(b) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
(c) $\int \cos (x) \cot (\sin x) d x$
(d) $\int x\left(e^{x}+e^{-x}\right) d x$
5. Indicate if the following series converge or diverge. You must identify all the tests you use and show all the work needed to apply them.
(a) $\sum_{k=2}^{\infty} \frac{1+\ln k}{k}$
(b) $\sum_{k=0}^{\infty} \frac{(-2)^{k}}{k!}$
(c) $\sum_{k=2}^{\infty} \frac{k!}{(k-1)^{3}}$
(d) $\sum_{k=1}^{\infty} \frac{2}{k}-\frac{2}{k+1}$
6. Does the series $\sum_{k=1}^{\infty} \frac{2^{k}}{5^{k}}$ converge? If so, find the sum. If not, explain why not. Does the sequence $\left\{\frac{2^{k}}{5^{k}}\right\}$ converge? If so, find the limit. If not, explain why not.
7. Suppose $a_{k}, b_{k}>0, \lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0$, and $\sum_{k=1}^{\infty} b_{k}$ converges. Does $\sum_{k=1}^{\infty} a_{k}$ converge? Why or why not?
8. Find the radius of convergence of the power series $\sum_{k=3}^{\infty} \frac{3}{k 2^{k}}(x-5)^{k}$.
9. Find the first 3 terms of the Taylor series for $f(x)=\sqrt{x}$ centered at 9 .
10. Let $\mathbf{u}=<-2,0,1>$ and $\mathbf{v}=<0,2,-3>$.
(a) Find the number a so that $\langle 1,1, a\rangle$ is orthogonal to \mathbf{u}.
(b) Find $\|\mathbf{u} \times \mathbf{v}\|$.
