Show all work and clearly indicate final answers in your blue books.

- 1. Solve exactly (no calculator approximations):  $x^2 + 4x + 1 = 0$ .
- 2. Find the center and radius for the circle given by  $2x^2 + 4x + 2y^2 8y + 8 = 0$ .
- 3. Solve the inequality:  $\frac{x+1}{2x-1} < 0.$
- 4. Let  $f(x) = \frac{2}{x+1}$ . Find  $f^{-1}(x)$  and verify your answer by calculating  $f(f^{-1}(x))$ .
- 5. The price of a new machine is \$31,500. After 15 years, the machine has a salvage value of \$1,500. Assuming linear depreciation, find a formula for the value of the machine after t years,  $0 \le t \le 15$ .
- 6. Determine the following for the function  $f(x) = \frac{x-1}{x^2 2x}$ .
  - a) Domain of f
  - $\overrightarrow{b}$ ) Range of f
  - c) x-intercepts (if any)

- d) y-intercepts (if any)
- e) vertical asymptotes
- f) Sketch the graph of y = f(x).
- 7. Solve for x:  $\log_2(x) \log_2(x-2) = 1$ .
- 8. The amount of the radioactive element sodium-24 in a sample after t hours is given by  $N = N_0 e^{-0.047t}$ , where  $N_0$  is the current amount. If there are currently 2 g of sodium-24 in the sample, how long before there is only 1 g?
- 9. Give exact values for the following expressions (not calculator approximations). If the answer is in an angle, use radians.

a) 
$$\sin\left(\frac{5\pi}{3}\right)$$

b) 
$$\cos{(-120^{\circ})}$$

c) 
$$\tan\left(\frac{5\pi}{6}\right)$$

d) 
$$\sin^{-1}\left(\frac{1}{2}\right)$$

e) 
$$\sin \left[\cos^{-1}\left(\frac{5}{13}\right)\right]$$
.

10. Given that  $\tan \theta = \frac{2}{3}$  and  $\theta$  is in the third quadrant, find exact values for the other 5 trig functions of  $\theta$ .

11. Graph at least one period of  $y = 2\sin(3x - \pi)$ . State clearly the amplitude, period, phase shift, and intercepts.

12. Find all solutions on the interval  $[0, 2\pi)$  of  $2\sin^2 x - \sin x = 0$ .

13. To an observer standing 500 feet from the base of a radio tower, the angle of elevation of the top of the tower is 36°. How high is the tower to the nearest foot.

14. A triangle has sides of a = 5, b = 4, and c = 6. (All measurements are given in feet.) Determine angle A of the triangle in degrees to one decimal place.

15. Solve the system

$$\begin{array}{rcl}
2x & - & y & = & -5 \\
x & + & 2y & = & 5.
\end{array}$$

16. The polar coordinates of a point are  $(2, \frac{5\pi}{6})$ . Find the rectangular coordinates for the point.

17. Let  $\mathbf{a} = \langle 1, 1 \rangle$  and  $\mathbf{b} = \langle 3, 4 \rangle$ . Find

- a)  $\mathbf{a} + \mathbf{b}$
- b) |**b**|.

18. Find the partial fraction decomposition:  $\frac{x}{(x+2)(x-3)}$ .